Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs

Abstract

Many bacterial pathogens express lipooligosaccharides that mimic human cell surface glycoconjugates, enabling them to attach to host receptors and to evade the immune response. In Neisseria meningitidis, the galactosyltransferase LgtC catalyzes a key step in the biosynthesis of lipooligosaccharide structure by transferring α-d-galactose from UDP-galactose to a terminal lactose. The product retains the configuration of the donor sugar glycosidic bond; LgtC is thus a retaining glycosyltranferase. We report the 2 Å crystal structures of the complex of LgtC with manganese and UDP 2-deoxy-2-fluoro-galactose (a donor sugar analog) in the presence and absence of the acceptor sugar analog 4′-deoxylactose. The structures, together with results from site-directed mutagenesis and kinetic analysis, give valuable insights into the unique catalytic mechanism and, as the first structure of a glycosyltransferase in complex with both the donor and acceptor sugars, provide a starting point for inhibitor design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glycosyl transfer reactions.
Figure 2: An amino acid sequence alignment of N. meningitidis LgtC and related enzymes from glycosyl transferase family 8.
Figure 3: The overall architecture of LgtC.
Figure 4: The active site.
Figure 5: Schematic representation of the interactions between the enzyme and the substrate analogs.
Figure 6: Possible mechanisms of the LgtC catalyzed reaction.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tzeng, Y.L. & Stephens, D.S. Epidemiology and pathogenesis of Neisseria meningitidis. Microbes Infect. 2, 687–700 (2000).

    Article  CAS  Google Scholar 

  2. Wakarchuk, W.W., Martin, A., Jennings, M.P., Moxon, E.R. & Richards, J.C. Functional relationships of the genetic locus encoding the glycosyltransferase enzymes involved in expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. J. Biol. Chem. 271, 19166–19173 (1996).

    Article  CAS  Google Scholar 

  3. Moran, A.P., Prendergast, M.M. & Appelmelk, B.J. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol. Med. Microbiol. 16, 105–115 (1996).

    Article  CAS  Google Scholar 

  4. Kahler, C. & Stephens, D. Genetic basis for biosynthesis, structure and function of meningococcal lipooligosaccharide (endotoxin). Crit. Rev. Microbiol. 24, 281–334 (1998).

    Article  CAS  Google Scholar 

  5. Campbell, J.A., Davies, G.J., Bulone, V. & Henrissat, B. A classification of nucleotide-diphospho-sugar glycosyltransferase based on amino acid sequence similarities. Biochem. J. 329, 929–939 (1997).

    Article  Google Scholar 

  6. Wakarchuk, W., Cunningham, A., Watson, D. & Young, M. Role of paired basic residues in the expression of active recombinant galactosyltransferases from bacterial pathogen Neisseria meningitidis. Protein Eng. 11, 295–302 (1998).

    Article  CAS  Google Scholar 

  7. Whitfield, C. & Roberts, I.S. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol. Microbiol. 31, 1307–1319 (1999).

    Article  CAS  Google Scholar 

  8. Takayama, S. et al. Selective inhibition of β-1,4- and α-1,3-galactosyltransferases: donor sugar-nucleotide based approach. Bioorg. Med. Chem. 7, 401–409 (1999).

    Article  CAS  Google Scholar 

  9. Sinnott, M.L. Catalytic mechanisms of enzymatic glycosyl transfer. Chem. Rev. 90, 1171–1202 (1990).

    Article  CAS  Google Scholar 

  10. Davies, G., Withers, S.G. & Sinnott, M.L. In Comprehensive biological catalysis, Vol. 1 (ed., Sinnott, M.L.) 119–208 (Academic Press, London; 1997).

    Google Scholar 

  11. Zechel, D.L. & Withers, S.G. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 33, 11–18 (2000).

    Article  CAS  Google Scholar 

  12. Vrielink, A., Ruger, W., Driessen, H.P.C. & Freemont, P.S. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 13, 3413–3422 (1994).

    Article  CAS  Google Scholar 

  13. Charnock, S. & Davies, G. Structure of the nucleotide-diphospho-sugar transferase, SpSA from Bacillus subtilin, in native and nucleotide-complexed forms. Biochemistry 38, 6380–6385 (1998).

    Article  Google Scholar 

  14. Gastinel, L., Cambillau, C. & Bourne, Y. Crystal structures of the bovine β4galactosyltransferse catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 18, 3546–3557 (1999).

    Article  CAS  Google Scholar 

  15. Ha, S., Walker, D., Shi, Y. & Walker, S. The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9, 1045–1052 (2000).

    Article  CAS  Google Scholar 

  16. Pedersen, L.C. et al. Heparan/chondroitin sulfate biosynthesis: structure and mechanism of human glucuronyltransferase I. J. Biol. Chem. 275, 34580–34585 (2000).

    Article  CAS  Google Scholar 

  17. Ünligil, U.M. et al. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I; catalytic mechanism and a new protein superfamily. EMBO J. 19, 5269–5280 (2000).

    Article  Google Scholar 

  18. Lu, G. TOP: a new method for protein structure comparison and similarity searches. J. Appl. Crystallogr. 33, 176–183 (2000).

    Article  CAS  Google Scholar 

  19. Burkart, M.D. et al. Chemo-enzymatic synthesis of fluorinated sugar nucleotide: useful mechanistic probes for glycosyl transferases. Bioorg. Med. Chem. 8, 1937–1946 (2000).

    Article  CAS  Google Scholar 

  20. Thoden, J.B. & Holden, H.M. Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli. Biochemistry 37, 11469–11477 (1998).

    Article  CAS  Google Scholar 

  21. Martin, J.L., Johnson, L.N. & Withers, S.G. Comparison of the binding of glucose and glucose 1-phosphate derivatives to T-state glycogen phosphorylase b. Biochemistry 29, 10745–10757 (1990).

    Article  CAS  Google Scholar 

  22. Uitdehaag, J.C.M. et al. Catalysis in the α-amylase family: X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase. Nature Struct. Biol. 6, 432–436 (1999).

    Article  CAS  Google Scholar 

  23. Brayer, G.D. et al. Subsite mapping of the human pancreatic α-amylase active site through structural, kinetic, and mutagenesis techniques. Biochemistry 39, 4778–4791 (2000).

    Article  CAS  Google Scholar 

  24. Breton, C., Bettler, E., Joziasse, D.H., Geremia, R.A. & Imberty, A. Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases. J. Biochem. 123, 1000–1009 (1998).

    Article  CAS  Google Scholar 

  25. Kapitonov, D. & Yu, R.K. Conserved domains of glycosyltransferases. Glycobiology 9, 961–978 (1999).

    Article  CAS  Google Scholar 

  26. Busch, C. et al. A common motif of eukaryotic glycosyltransferases is essential for the enzymatic activity of large Clostridial cystotoxins. J. Biol. Chem. 273, 19566–19572 (1998).

    Article  CAS  Google Scholar 

  27. Shibayamam, K., Ohsuka, S., Toshihiko, T., Yoshickika, A. & Ohta, M. Conserved structural regions involved in the catalytic mechanism of Escherichia coli K-12 WaaO (RfaI). J. Bacteriol. 180, 5313–5318 (1998).

    Google Scholar 

  28. Wiggins, C.A.R. & Munro, S. Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc. Natl. Acad. Sci. USA 95, 7945–7950 (1998).

    Article  CAS  Google Scholar 

  29. Hagen, F.K., Hazes, B., Raffo, R., deSa, D. & Tabak, L.A. Structure-function analysis of the UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase. J. Biol. Chem. 274, 6797–6803 (1999).

    Article  CAS  Google Scholar 

  30. Moloney, D.J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    Article  CAS  Google Scholar 

  31. Brückner, K., Perez, L., Clausen, H. & Cohen, S. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406, 411–415 (2000).

    Article  Google Scholar 

  32. Lougheed, B. M.Sc. thesis. Study of Neisseria meningitidis α-galactosyltransferase. (University of British Columbia; 1998).

    Google Scholar 

  33. Glusker, J. Structural aspects of metal liganding to functional groups in proteins. Adv. Protein Chem. 42, 1–76 (1991).

    Article  CAS  Google Scholar 

  34. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  35. Burgi, H., Dunitz, J. & Shefter, E. Nucleophilic addition to a carbonyl group. J. Am. Chem. Soc. 95, 5065–5067 (1973).

    Article  CAS  Google Scholar 

  36. Mitchell, E.P. et al. Ternary complex crystal structures of glycogen phosphorylase with the transition state analog nojirimycin tetrazole and phosphate in the T and R states. Biochemistry 35, 7341–7355 (1996).

    Article  CAS  Google Scholar 

  37. Watson, K.A. et al. Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. EMBO J. 18, 4619–4632 (1999).

    Article  CAS  Google Scholar 

  38. Artymuik, P.J., Rice, D.W., Poirrette, A.R. & Willett, P. β-Glucosyltransferase and phophorylase reveal their common theme. Nature Struct. Biol. 2, 117–120 (1995).

    Article  Google Scholar 

  39. Holm, L. & Sander, C. Evolutionary link between glycogen phosphorylase and a DNA modifying enzyme. EMBO J. 14, 1287–1293 (1995).

    Article  CAS  Google Scholar 

  40. Ly, H.D. & Withers, S.G. Mutagenesis of glycosidases. Annu. Rev. Biochem. 68, 487–522 (1999).

    Article  CAS  Google Scholar 

  41. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    Article  CAS  Google Scholar 

  42. Gosselin, S., Alhussaini, M., Streiff, M.B., Takabayashi, K. & Palcic, M.M. A continuous spectrophotometric assay for glycosyltransferases. Anal. Biochem. 220, 92–97 (1994).

    Article  CAS  Google Scholar 

  43. Leatherbarrow, R. Grafit Version 3.0 (Erithacus Software Ltd., Staines, UK; 1990).

    Google Scholar 

  44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  45. Terwilliger, T.C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  46. Cowtan, K. DM: An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  47. McRee, D.E. Practical protein crystallography. A visual protein crystallographic software system for X11/XView. J. Mol. Graphics 10, 44–46 (1992).

    Article  Google Scholar 

  48. Brünger, A. et al. Crystallography and NMR system: a new software suit for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  49. Engh, R. & Huber, R. Accurate bond and angle parameter for X-ray protein structure refinement. Acta Crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  50. Kleywegt, G. & Jones, T. Model building and refinement practice. Methods Enzymol. 277, 208–230 (1997).

    Article  CAS  Google Scholar 

  51. Laskowski, R., MacArthur, M., Moss, D. & Thornton, J. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  52. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  53. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  54. Nicholls, A., Sharp, K. & Honig, B. Protein folding association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Bellamy and the staff of the SSRL for access to beamline 1-5 for data collection. We thank D. Dombroski for performing initial crystallization trials on LgtC. Financial support from the Natural Sciences and Engineering Research Council of Canada in terms of a scholarship to H.D.L. and a strategic grant to S.G.W., W.W.W. and N.C.J.S. is gratefully acknowledged. K.P. is a Swedish Research Council for Engineering Sciences Scholar. N.C.J.S. is a MRC Scholar, Burroughs Wellcome New Investigator and Howard Hughes International Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie C.J. Strynadka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, K., Ly, H., Dieckelmann, M. et al. Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat Struct Mol Biol 8, 166–175 (2001). https://doi.org/10.1038/84168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing