Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for recognition of AU-rich element RNA by the HuD protein

Abstract

Hu proteins bind to adenosine-uridine (AU)-rich elements (AREs) in the 3′ untranslated regions of many short-lived mRNAs, thereby stabilizing them. Here we report the crystal structures of the first two RNA recognition motif (RRM) domains of the HuD protein in complex with an 11-nucleotide fragment of a class I ARE (the c-fos ARE; to 1.8 Å), and with an 11-nucleotide fragment of a class II ARE (the tumor necrosis factor α ARE; to 2.3 Å). These structures reveal a consensus RNA recognition sequence that suggests a preference for pyrimidine-rich sequences and a requirement for a central uracil residue in the clustered AUUUA repeats found in class II AREs. Comparison to structures of other RRM domain–nucleic acid complexes reveals two base recognition pockets in all the structures that interact with bases using residues in conserved ribonucleoprotein motifs and at the C-terminal ends of RRM domains. Different conformations of nucleic acid can be bound by RRM domains by using different combinations of base recognition pockets and multiple RRM domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the HuD1,2–cfos-11 complex.
Figure 2: Protein–RNA contacts.
Figure 3: Comparison of the HuD1,2–cfos-11 and Sxl–tra complexes.
Figure 4: Nucleic acid recognition by RRM domains.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Chen, C.Y. & Shyu, A.B. Trends Biochem. Sci. 20, 465–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Keene, J.D. Proc. Natl Acad. Sci. USA 96, 5–7 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Antic, D., Lu, N. & Keene, J.D. Genes Dev. 13, 449–461 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chung, S., Jiang, L., Cheng, S. & Furneaux, H. J. Biol. Chem. 271, 11518–11524 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Abe, R., Sakashita, E., Yamamoto, K. & Sakamoto, H. Nucleic Acids Res. 24, 4895–4901 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma, W.J., Chung, S. & Furneaux, H. Nucleic Acids Res. 25, 3564–3569 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan, X.C. & Steitz, J.A. EMBO J. 17, 3448–3460 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Levine, T.D., Gao, F., King, P.H., Andrews, L.G. & Keene, J.D. Mol. Cell Biol. 13, 3494–3504 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park, S., Myszka, D.G., Yu, M., Littler, S.J. & Laird-Offringa, I.A. Mol. Cell Biol. 20, 4765–4772 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao, F.B., Carson, C.C., Levine, T. & Keene, J.D. Proc. Natl Acad. Sci. USA 91, 11207–11211 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Handa, N. . et al. Nature 398, 579–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Koushika, S.P., Lisbin, M.J. & White, K. Curr. Biol. 6, 1634–1641 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Koushika, S.P., Soller, M. & White, K. Mol. Cell Biol. 20, 1836–1845 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bell, L.R., Maine, E.M., Schedl, P. & Cline, T.W. Cell 55, 1037–1046 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Jain, R.G., Andrews, L.G., McGowan, K.M., Pekala, P.H. & Keene, J.D. Mol. Cell Biol. 17, 954–962 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bashaw, G.J. & Baker, B.S. Cell 89, 789–798 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Kelley, R.L., Wang, J., Bell, L. & Kuroda, M.I. Nature 387, 195–199 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Gebauer, F., Merendino, L., Hentze, M.W. & Valcarcel, J. RNA 4, 142–150 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Deo, R.C., Bonanno, J.B., Sonenberg, N. & Burley, S.K. Cell 98, 835–845 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ding, J. . et al. Genes Dev. 13, 1102–1115 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oubridge, C., Ito, N., Evans, P.R., Teo, C.H. & Nagai, K. Nature 372, 432–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Price, S.R., Evans, P.R. & Nagai, K. Nature 394, 645–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Varani, L. . et al. Nature Struct. Biol. 7, 329–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Antson, A.A. Curr. Opin. Struct. Biol. 10, 87–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Otwinowski, Z. & Minor, V. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Matthews, B.W. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  PubMed  Google Scholar 

  27. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  28. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  29. Brünger, A.T., et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  30. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  31. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  32. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Kabsch, W. & Sander, C. Biopolymers 22, 1–17 (1983).

    Article  Google Scholar 

  34. Barton, G.J. Protein Eng. 6, 37–40 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Spizz for generously providing the human fetal brain cDNA; S. Strachan for initial cloning of expression constructs; W. Lai for performing preliminary RNA binding experiments; T. Transue for suggestions on RNA oligonucleotide design; C. Matson for assistance with crystallization; L. Pedersen, Z. Dauter and the staff of X9-B for assistance with data collection; J. Krahn for computer support and advice on crystallography; and P. Blackshear, D. Leahy, and K. Weeks for critical comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traci M. Tanaka Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Tanaka Hall, T. Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat Struct Mol Biol 8, 141–145 (2001). https://doi.org/10.1038/84131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing