Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of free BglII reveals an unprecedented scissor-like motion for opening an endonuclease

Abstract

Restriction endonuclease BglII completely encircles its target DNA, making contacts to both the major and minor grooves. To allow the DNA to enter and leave the binding cleft, the enzyme dimer has to rearrange. To understand how this occurs, we have solved the structure of the free enzyme at 2.3 Å resolution, as a complement to our earlier work on the BglII–DNA complex. Unexpectedly, the enzyme opens by a dramatic `scissor-like' motion, accompanied by a complete rearrangement of the α-helices at the dimer interface. Moreover, within each monomer, a set of residues — a ‘lever’ — lowers or raises to alternately sequester or expose the active site residues. Such an extreme difference in free versus complexed structures has not been reported for other restriction endonucleases. This elegant mechanism for capturing DNA may extend to other enzymes that encircle DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure.
Figure 2: Comparison of free and DNA bound monomers to show the lever motion.
Figure 3: A view of the scissor-like motion.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Winkler, F.K. et al. EMBO J. 12, 1781–1795 (1993).

    Article  CAS  Google Scholar 

  2. Newman, M., Strzelecka, T., Dorner, L.F., Schildkraut, I. & Aggarwal, A.K. Structure 2, 439–452 (1994).

    Article  CAS  Google Scholar 

  3. Newman, M., Strzelecka, T., Dorner, L.F., Schildkraut, I. & Aggarwal, A.K. Nature 368, 660–664 (1994).

    Article  CAS  Google Scholar 

  4. Newman, M., Strzelecka, T., Dorner, L., Schildkraut, I. & Aggarwal, A.K. Science 269, 656–663 (1995).

    Article  CAS  Google Scholar 

  5. Athanasiadis, A. et al. Nature Struct. Biol. 1, 469–475 (1994).

    Article  CAS  Google Scholar 

  6. Cheng, X., Balendiran, K., Schildkraut, I. & Anderson, J.E. EMBO J. 13, 3927–3935 (1994).

    Article  CAS  Google Scholar 

  7. Wah, D.A., Hirsch, J.A., Dorner, L.F., Schildkraut, I. & Aggarwal, A.K. Nature 388, 97–100 (1997).

    Article  CAS  Google Scholar 

  8. Wah, D.A., Bitinaite, J., Schildkraut, I. & Aggarwal, A.K. Proc. Natl. Acad. Sci. USA 95, 10564–10569 (1998).

    Article  CAS  Google Scholar 

  9. Roberts, R.J. & Halford, S.E. In Nucleases (eds., Linn, S.M., Lloyd, R.S. & Roberts, R.J.) (Cold Spring Harbor, New York; 1993).

    Google Scholar 

  10. Aggarwal, A.K. Curr. Opin. Struct. Biol. 5, 11–19 (1995).

    Article  CAS  Google Scholar 

  11. Pingoud, A. & Jeltsch, A. Eur. J. Biochem. 246, 1–22 (1997).

    Article  CAS  Google Scholar 

  12. Kim, Y., Grable, J.C., Choi, P.J., Greene, P. & Rosenberg, J.M. Science 249, 1307–1309 (1990).

    Article  CAS  Google Scholar 

  13. Deibert, M., Grazulis, S., Janulaitis, A., Siksnys, V. & Huber, R. EMBO J. 18, 5805–5816 (1999).

    Article  CAS  Google Scholar 

  14. Lukacs, C.M., Kucera, R., Schildkraut, I. & Aggarwal, A.K. Nature Struct. Biol. 7, 134–140 (2000).

    Article  CAS  Google Scholar 

  15. Perona, J.J. & Martin, A.M. J. Mol. Biol. 273, 207–225 (1997).

    Article  CAS  Google Scholar 

  16. Anton, B.P. et al. Gene 187, 19–27 (1997).

    Article  CAS  Google Scholar 

  17. Nicholls, A., Sharp, K. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  18. Janin, J., Miller, S. & Chothia, C. J. Mol. Biol. 204, 155–164 (1988).

    Article  CAS  Google Scholar 

  19. Jones, S. & Thornton, J.M. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996).

    Article  CAS  Google Scholar 

  20. Chantalat, L. et al. EMBO J. 18, 2930–2940 (1999).

    Article  CAS  Google Scholar 

  21. Chantalat, L. et al. Mol. Cell 6, 183–189 (2000).

    Article  CAS  Google Scholar 

  22. Heath, P.J., Stephens, K.M., Monnat, R.J., Jr. & Stoddard, B.L. Nature Struct. Biol. 4, 468–476 (1997).

    Article  CAS  Google Scholar 

  23. Galburt, E.A. et al. J. Mol. Biol. 300, 877–887 (2000).

    Article  CAS  Google Scholar 

  24. Ghosh, G., Van Duyne, G., Ghosh, S. & Sigler, P.B. Nature 373, 303–310 (1995).

    Article  CAS  Google Scholar 

  25. Muller, C.W., Rey, F.A., Sodeoka, M., Verdine, G.L. & Harrison, S.C. Nature 373, 311–317 (1995).

    Article  CAS  Google Scholar 

  26. Muller, C.W., Rey, F.A. & Harrison, S.C. Nature Struct. Biol. 3, 224–227 (1996).

    Article  CAS  Google Scholar 

  27. Ferre-D'Amare, A.R., Prendergast, G.C., Ziff, E.B. & Burley, S.K. Nature 363, 38–45 (1993).

    Article  CAS  Google Scholar 

  28. Ellenberger, T., Fass, D., Arnaud, M. & Harrison, S.C. Genes Dev. 8, 970–980 (1994).

    Article  CAS  Google Scholar 

  29. Fairman, R., Beran-Steed, R.K. & Handel, T.M. Protein Sci. 6, 175–184 (1997).

    Article  CAS  Google Scholar 

  30. Lu, B., Morrow, J. & Weisgraber, K.H. J. Biol. Chem. 275, 20775–20781 (2000).

    Article  CAS  Google Scholar 

  31. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  32. Viadiu, H. & Aggarwal, A.K. Mol. Cell 5, 889–895 (2000).

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  34. Navaza, J. In Molecular replacement (eds., Dodson, E.J., Gover, S. & Wolf, W.) (Science and Engineering Research Council, Daresbury Laboratory, Warrington, UK; 1992).

    Google Scholar 

  35. Brunger, A.T. et al. Acta Crystallogr. D 54, 905 (1998).

  36. Jones, A.T., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  37. Fortelle, d.L. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  38. Abrahams, J.P. & Leslie, A.G.W. Acta Crystallogr. D 52, 32–42 (1996).

    Article  Google Scholar 

  39. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  40. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Berman and H. Lewis for facilitating data collection at NSLS. A.K.A. is supported by a grant from the NIH, and C.M.L. is supported by a Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneel K. Aggarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukacs, C., Kucera, R., Schildkraut, I. et al. Structure of free BglII reveals an unprecedented scissor-like motion for opening an endonuclease. Nat Struct Mol Biol 8, 126–130 (2001). https://doi.org/10.1038/84111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing