Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of an Xrcc4–DNA ligase IV complex

Abstract

A complex of two proteins, Xrcc4 and DNA ligase IV, plays a fundamental role in DNA non-homologous end joining (NHEJ), a cellular function required for double-strand break repair and V(D)J recombination. Here we report the crystal structure of human Xrcc4 bound to a polypeptide that corresponds to the DNA ligase IV sequence linking its two BRCA1 C-terminal (BRCT) domains. In the complex, a single ligase chain binds asymmetrically to an Xrcc4 dimer. The helical tails of Xrcc4 undergo a substantial conformational change relative to the uncomplexed protein, forming a coiled coil that unwinds upon ligase binding, leading to a flat interaction surface. A buried network of charged hydrogen bonds surrounded by extensive hydrophobic contacts explains the observed tightness of the interaction. The strong conservation of residues at the interface between the two proteins provides evidence that the observed mode of interaction has been maintained in NHEJ throughout evolution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction between DNA ligase IV and Xrcc4.
Figure 2: Features of Xrcc4–DNA ligase IV complex.
Figure 3: Evolutionary conservation of amino acids responsible for the Xrcc4–DNA ligase IV interaction.
Figure 4: The protein–protein interface of the human Xrcc4–DNA ligase IV complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Critchlow, S.E. & Jackson, S.P. Trends Biochem. Sci. 23, 394–398 (1998).

    Article  CAS  Google Scholar 

  2. Jeggo, P.A. Adv. Genet. 38, 185–218 (1998).

    Article  CAS  Google Scholar 

  3. Grawunder, U. & Harfst, E. Curr. Opin. Immunol. 13, 186–194 (2001).

    Article  CAS  Google Scholar 

  4. Critchlow, S.E., Bowater, R.P. & Jackson, S.P. Curr. Biol. 7, 588–958 (1997).

    Article  CAS  Google Scholar 

  5. Grawunder, U. et al. Nature 388, 492–495 (1997).

    Article  CAS  Google Scholar 

  6. Li, Z. et al. Cell 83, 1079–1089 (1995).

    Article  CAS  Google Scholar 

  7. Gao, Y. et al. Cell 95, 891–902 (1998).

    Article  CAS  Google Scholar 

  8. Frank, K.M. et al. Mol. Cell 5, 993–1002 (2000).

    Article  CAS  Google Scholar 

  9. Gao, Y. et al. Nature 404, 897–900 (2000).

    Article  CAS  Google Scholar 

  10. Barnes, D.E., Stamp, G., Rosewell, I., Denzel, A. & Lindhal, T. Curr. Biol. 8, 1395–1398 (1998).

    Article  CAS  Google Scholar 

  11. Junop, M.S. et al. EMBO J. 19, 5962–5970 (2000).

    Article  CAS  Google Scholar 

  12. Mizuta, R., Cheng, H.L., Gao, Y. & Alt, F.W. Int. Immunol. 9, 1607–1613 (1997).

    Article  CAS  Google Scholar 

  13. Tomkinson, A.E. & Mackey, Z.B. Mutat. Res. 407, 1–9 (1998).

    Article  CAS  Google Scholar 

  14. Bork, P. et al. FASEB J. 11, 68–76 (1997).

    Article  CAS  Google Scholar 

  15. Grawunder, U., Zimmer, D. & Leiber, M.R. Curr. Biol. 8, 873–876 (1998).

    Article  CAS  Google Scholar 

  16. Sibanda, B.L., Blundell, T.L. & Thornton, J.M. J. Mol. Biol. 206, 759–777 (1989).

    Article  CAS  Google Scholar 

  17. Modesti, M., Hesse, J.E. & Gellert, M. EMBO J. 18, 2008–2018 (1999).

    Article  CAS  Google Scholar 

  18. Keller, W., Konig, P. & Richmond, T.J. J. Mol. Biol. 254, 657–667 (1995).

    Article  CAS  Google Scholar 

  19. Gajiwala, K.S. et al. Nature 403, 916–921. (2000).

    Article  CAS  Google Scholar 

  20. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  21. Miller, R., Gallo, S.M., Khalak, H.G. & Weeks, C.M. J. Appl. Crystallogr. 27, 613–621 (1994).

    Article  CAS  Google Scholar 

  22. La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  23. Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  24. Brünger, A. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  25. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  26. Merrit, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Robbins for early work on Xrcc4, and E. Gordon, S. McSweeney, G. Leonard and E. Mitchell for excellent technical assistance at the ESRF beamlines. This research was supported by grants from the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Pellegrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibanda, B., Critchlow, S., Begun, J. et al. Crystal structure of an Xrcc4–DNA ligase IV complex. Nat Struct Mol Biol 8, 1015–1019 (2001). https://doi.org/10.1038/nsb725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing