Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of an activated response regulator bound to its target

Abstract

The chemotactic regulator CheY controls the direction of flagellar rotation in Escherichia coli. We have determined the crystal structure of BeF3-activated CheY from E. coli in complex with an N-terminal peptide derived from its target, FliM. The structure reveals that the first seven residues of the peptide pack against the β4-H4 loop and helix H4 of CheY in an extended conformation, whereas residues 8–15 form two turns of helix and pack against the H4-β5-H5 face. The peptide binds the only region of CheY that undergoes noticeable conformational change upon activation and would most likely be sandwiched between activated CheY and the remainder of FliM to reverse the direction of flagellar rotation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment and ribbon diagram of the BeF3–CheY–N16-FliM complex.
Figure 2: Stereo view of the active site of CheY showing the Fo − Fc electron density for the BeF3 moiety contoured at 5.5 σ.
Figure 3: GRASP33 electrostatic surface representations of:
Figure 4: Stereo view of the CheY–N16-FliM interface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Egger, L.A., Park, H. & Inouye, M. Genes To Cells 2, 167–184 (1997).

    Article  CAS  Google Scholar 

  2. Parkinson, J.S. & Kofoid, E.C. Annu. Rev. Genet. 26, 71–112 (1992).

    Article  CAS  Google Scholar 

  3. Falke, J.J., Bass, R.B., Butler, S.L., Chervitz, S.A. & Danielson, M.A. Annu. Rev. Cell Dev. Biol. 13, 457–512 (1997).

    Article  CAS  Google Scholar 

  4. Djordjevic, S. & Stock, A.M. J. Struct. Biol. 124, 189–200 (1998).

    Article  CAS  Google Scholar 

  5. Rombel, I., North, A., Hwang, I., Wyman, C. & Kustu, S. Cold Spring Harbor Symp. Quant. Biol. 63, 157–166 (1998).

    Article  CAS  Google Scholar 

  6. Kustu, S., North, A.K. & Weiss, D.S. Trends Biochem. Sci. 16, 397–402 (1991).

    Article  CAS  Google Scholar 

  7. Roman, S.J., Meyers, M., Volz, K. & Matsumura, P. J. Bacteriol. 174, 6247–6255 (1992).

    Article  CAS  Google Scholar 

  8. Sockett, H., Yamaguchi, S., Kihara, M., Irikura, V.M. & Macnab, R.M. J. Bacteriol. 174, 793–806 (1992).

    Article  CAS  Google Scholar 

  9. Barak, R. & Eisenbach, M. Curr. Top. Cell Regul. 34, 137–158 (1996).

    Article  CAS  Google Scholar 

  10. Toker, A.S. & Macnab, R.M. J. Mol. Biol. 273, 623–634 (1997).

    Article  CAS  Google Scholar 

  11. Bren, A. & Eisenbach, M. J. Mol. Biol. 278, 507–514 (1998).

    Article  CAS  Google Scholar 

  12. Welch, M., Oosawa, K., Aizawa, S.-I. & Eisenbach, M. Biochemistry 33, 10470–10476 (1994).

    Article  CAS  Google Scholar 

  13. McEvoy, M.M., Bren, A., Eisenbach, M. & Dahlquist, F.W. J. Mol. Biol. 289, 1423–1433 (1999).

    Article  CAS  Google Scholar 

  14. Yan, D. et al. Proc. Natl. Acad. Sci. USA 96, 14789–14794 (1999).

    Article  CAS  Google Scholar 

  15. Cho, H.S. et al. J. Mol. Biol. 297, 543–551 (2000).

    Article  CAS  Google Scholar 

  16. Lewis, R.J., Brannigan, J.A., Muchova, K., Barak, I. & Wilkinson, A.J. J. Mol. Biol. 294, 9–15 (1999).

    Article  CAS  Google Scholar 

  17. Birck, C. et al. Structure 7, 1505–1515 (1999).

    Article  CAS  Google Scholar 

  18. Matthews, M.A.A., Tang, H.L. & Blair, D.F. J. Bacteriol. 180, 5580–5590 (1998).

    Google Scholar 

  19. Toker, A.S., Kihara, M. & Macnab, R.M. J. Bacteriol. 178, 7069–7079 (1996).

    Article  CAS  Google Scholar 

  20. Halkides, C.J. et al. Biochemistry 39, 5280–5286 (2000).

    Article  CAS  Google Scholar 

  21. Lo Conte, L., Chothia, C. & Janin, J. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  CAS  Google Scholar 

  22. Aurora, R. & Rose, G.D. Protein Sci. 7, 21–38 (1998).

    Article  CAS  Google Scholar 

  23. Shuster, M., Zhao, R., Bourret, R.B. & Collins, E.J. J. Biol. Chem. 275, 19752–19758 (2000).

    Article  Google Scholar 

  24. Kern, D. et al. Nature 402, 894–898 (1999).

    Article  CAS  Google Scholar 

  25. Lee, J., Owens, J.T., Hwang, I., Meares, C. & Kustu, S. J. Bacteriol. 182, 5188–5192 (2000).

    Article  CAS  Google Scholar 

  26. Lee, J. Ph.D. Thesis. Phosphorylation Induced Interdomain Communication in the Response Regulator of NtrC from Salmonella typhimurium. (University of California; 2000).

    Google Scholar 

  27. Shi, W., Yang, Z., Geng, Y., Wolinsky, L.E. & Lovett, M.A. J. Bacteriol. 180, 231–235 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Canale-Parola, E. Free-living Saccharolytic Spirochetes, the genus Spirochaeta. In The prokaryotes, Vol. 4 (ed. Balows, A.) 329–333 (Springer-Verlag, New York; 1992).

    Google Scholar 

  29. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  30. Bailey, S. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  31. Kleywegt, G.J. & Jones, T.A. Acta Crystallogr. D 55, 941–944 (1999).

    Article  CAS  Google Scholar 

  32. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Nicholls, A., Sharp, K. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  34. Volz, K. & Matsumura, P. J. Biol. Chem. 266, 15511–15519 (1993).

    Google Scholar 

Download references

Acknowledgements

We thank H. Bellamy for performing the X-ray fluorescence scan and help in designing the MAD experiment at SSRL. We thank T. Earnest (ALS) and D. Shin (Physical Biosciences Division, LBL) for helpful advice and encouragement. This work was supported by the Office of Energy Research, Office of Health and Environmental Research, Health Effects Research Division of the U.S. Department of Energy (D.E.W.) and National Institutes of Health (S.K.) and through instrumentation grants from the U.S. Department of Energy and the National Science Foundation (D.E.W.). This work was done (partially) at SSRL which is operated by the Department of Energy, Office of Basic Energy Sciences. The SSRL Biotechnology Program is supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and by the Department of Energy, Office of Biological and Environmental Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Wemmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SY., Cho, H., Pelton, J. et al. Crystal structure of an activated response regulator bound to its target. Nat Struct Mol Biol 8, 52–56 (2001). https://doi.org/10.1038/83053

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing