Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins

Abstract

The Hah1 metallochaperone protein is implicated in copper delivery to the Menkes and Wilson disease proteins. Hah1 and the N-termini of its target proteins belong to a family of metal binding domains characterized by a conserved MT/HCXXC sequence motif. The crystal structure of Hah1 has been determined in the presence of Cu(I), Hg(II), and Cd(II). The 1.8 Å resolution structure of CuHah1 reveals a copper ion coordinated by Cys residues from two adjacent Hah1 molecules. The CuHah1 crystal structure is the first of a copper chaperone bound to copper and provides structural support for direct metal ion exchange between conserved MT/HCXXC motifs in two domains. The structures of HgHah1 and CdHah1, determined to 1.75 Å resolution, also reveal metal ion coordination by two MT/HCXXC motifs. An extended hydrogen bonding network, unique to the complex of two Hah1 molecules, stabilizes the metal binding sites and suggests specific roles for several conserved residues. Taken together, the structures provide models for intermediates in metal ion transfer and suggest a detailed molecular mechanism for protein recognition and metal ion exchange between MT/HCXXC containing domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of CuHah1.
Figure 2: Stereo views of the metal binding sites in Hah1 and Atx1.
Figure 3: Hydrogen bonding interactions.
Figure 4: Proposed mechanism of copper transfer between Hah1 and a domain of the Menkes or Wilson protein.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bull, P.C. & Cox, D.W. Trends Genet. 10, 246–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Solioz, M. & Vulpe, C. Trends Biol. Sci. 21, 237–241 (1996).

    Article  CAS  Google Scholar 

  3. Vulpe, C., Levinson, B., Whitney, S., Packman, S. & Gitschier, J. Nature Genet. 3, 7–13 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Bull, P.C., Thomas, G.R., Rommens, J.M., Forbes, J.R. & Cox, D.W. Nature Genet. 5, 327–337 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Sarkar, B. Chem. Rev. 99, 2535–2544 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Klomp, L.W.J. et al. J. Biol. Chem. 272, 9221–9226 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Hung, I.H., Casareno, R.L.B., Labesse, G., Matthews, F.S. & Gitlin, J.D. J. Biol. Chem. 273, 1749–1754 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Rosenzweig, A.C. & O'Halloran, T.V. Curr. Opin. Chem. Biol. 4, 140–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Pufahl, R.A. et al. Science 278, 853–856 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Huffman, D.L. & O'Halloran, T.V. J. Biol. Chem., 275, 18611–18614 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Larin, D. et al. J. Biol. Chem. 274, 28497–28504 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Hamza, I., Schaefer, M., Klomp, L.W.J. & Gitlin, J.D. Proc. Natl. Acad. Sci. USA 96, 13363–13368 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. DiDonato, M., Narindrasorasak, S., Forbes, J.R., Cox, D.W. & Sarkar, B. J. Biol. Chem. 272, 33279–33282 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Lutsenko, S., Petrukhin, K., Cooper, M.J., Gilliam, C.T. & Kaplan, J.H. J. Biol. Chem. 272, 18939–18944 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Portnoy, M.E. et al. J. Biol. Chem. 274, 15041–15045 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Payne, A.S. & Gitlin, J.D. J. Biol. Chem. 273, 3765–3770 (1999).

    Article  Google Scholar 

  17. Ralle, M., Cooper, M.J., Lutsenko, S. & Blackburn, N.J. J. Am. Chem. Soc. 120, 13525–13526 (1998).

    Article  CAS  Google Scholar 

  18. DiDonato, M., Hsu, H.-F., Narindrasorasak, S., Que, L., Jr. & Sarkar, B. Biochemistry 39, 1890–1896 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Rosenzweig, A.C. et al. Structure 7, 605–617 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Gitschier, J., Moffat, B., Reilly, D., Wood, W.I. & Fairbrother, W.J. Nature Struct. Biol. 5, 47–54 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Lamb, A.L., Wernimont, A.K., Pufahl, R.A., O'Halloran, T.V. & Rosenzweig, A.C. Nature Struct. Biol. 6, 724–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Wimmer, R., Herrmann, T., Solioz, M. & Wüthrich, K. J. Biol. Chem. 274, 22597–22603 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Steele, R.A. & Opella, S.J. Biochemistry 36, 6885–6895 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Robbins, A.H. et al. J. Mol. Biol. 221, 1269–1293 (1991).

    CAS  PubMed  Google Scholar 

  25. Watton, S.P. et al. J. Amer. Chem. Soc. 112, 2824–2826 (1990).

    Article  CAS  Google Scholar 

  26. Wright, J.W., Natan, M.J., MacDonnell, F.M., Ralston, D.M. & O'Halloran, T.V. Prog. Inorg. Chem. 38, 323–412 (1990).

    CAS  Google Scholar 

  27. Coucouvanis, D., Murphy, C.N. & Kanodia, S.K. Inorg. Chem. 19, 2993–2998 (1980).

    Article  CAS  Google Scholar 

  28. Pickering, I.J. et al. J. Am. Chem. Soc. 115, 9498–9505 (1993).

    Article  CAS  Google Scholar 

  29. Koch, S.A., Fikar, R., Millar, M. & O'Sullivan, T. Inorg. Chem. 23, 122–124 (1984).

    Article  Google Scholar 

  30. Fujisawa, K., Imai, S., Kitajima, N. & Moro-oka, Y. Inorg. Chem. 37, 168–169 (1998).

    Article  CAS  Google Scholar 

  31. Karlin, S., Zhu, Z.-Y. & Karlin, K.D. Biochemistry 37, 17726–17734 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  34. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  35. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  36. Laskowski, R.A. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  37. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  38. Esnouf, R.M. J. Mol. Graph. Model 15, 132–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants to A.C.R. and T.V.O., by an NIH training grant to D.L.H., and by an NIH NRSA Fellowship to A.L.L. Stanford Synchrotron Radiation Laboratory (SSRL) is funded by the Department of Energy, Office of Basic Energy Sciences, and the DND-CAT Synchrotron Research Center at the Advanced Photon Source is supported by the E.I. DuPont de Nemours & Co., The Dow Chemical Company, the NSF, and the State of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy C. Rosenzweig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wernimont, A., Huffman, D., Lamb, A. et al. Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Mol Biol 7, 766–771 (2000). https://doi.org/10.1038/78999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing