Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for the function of Bacillus subtilis phosphoribosyl-pyrophosphate synthetase

Abstract

Here we report the first three-dimensional structure of a phosphoribosylpyrophosphate (PRPP) synthetase. PRPP is an essential intermediate in several biosynthetic pathways. Structures of the Bacillus subtilis PRPP synthetase in complex with analogs of the activator phosphate and the allosteric inhibitor ADP show that the functional form of the enzyme is a hexamer. The individual subunits fold into two domains, both of which resemble the type I phosphoribosyltransfereases. The active site is located between the two domains and includes residues from two subunits. Phosphate and ADP bind to the same regulatory site consisting of residues from three subunits of the hexamer. In addition to identifying residues important for binding substrates and effectors, the structures suggest a novel mode of allosteric regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alignment of PRPP synthetase sequences
Figure 2: Overall fold, topology and quaternary structure of PRPP synthetase
Figure 3: Catalytic and regulatory sites with omit electron density maps
Figure 4: Stereo views of the catalytic and regulatory sites

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jensen, K.F. In Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms (ed., Munch-Petersen, A.), 1–25 (Academic Press, London; 1983).

    Google Scholar 

  2. Khorana, H.G., Fernandes, J.F. & Kornberg, A. J. Biol. Chem. 230, 941– 948 (1958).

    CAS  PubMed  Google Scholar 

  3. Switzer, R.L. J. Biol. Chem. 244, 2854–2863 (1969).

    CAS  PubMed  Google Scholar 

  4. Becker, M.A., Raivio, K.O., Bakay, B., Adams, W.B. & Nyhan, W.L. J. Clin. Invest. 65, 109– 120 (1980).

    Article  CAS  Google Scholar 

  5. Ishijima, S. et al. J. Biol. Chem. 266, 15693– 15697 (1991).

    CAS  PubMed  Google Scholar 

  6. Nosal, J.M., Switzer, R.L. & Becker, M.A. J. Biol. Chem. 268, 10168– 10175 (1993).

    CAS  PubMed  Google Scholar 

  7. Switzer, R.L. & Sogin, D.C. J. Biol. Chem. 248, 1063–1073 (1973).

    CAS  PubMed  Google Scholar 

  8. Willemoes, M., Nilsson, D. & Hove-Jensen, B. Biochemistry 35, 8181– 8186 (1996).

    Article  CAS  Google Scholar 

  9. Willemoes, M. & Hove-Jensen, B. Biochemistry 36, 5078–5083 (1997).

    Article  CAS  Google Scholar 

  10. Harlow, K.W. & Switzer, R.L. J. Biol. Chem. 265 , 5487–5493 (1990).

    CAS  PubMed  Google Scholar 

  11. Hilden, I., Hove-Jensen, B. & Harlow, K.W. J. Biol. Chem. 270, 20730– 20736 (1995).

    Article  CAS  Google Scholar 

  12. Roberts, M.F. & Switzer, R.L. Arch. Biochem. Biophys. 185, 391–399 (1978).

    Article  CAS  Google Scholar 

  13. Arnvig, K., Hove-Jensen, B. & Switzer, R.L. Eur. J. Biochem. 192, 195– 200 (1990).

    Article  CAS  Google Scholar 

  14. Switzer, R.L. J. Biol. Chem. 246, 2447–2458 (1971).

    CAS  PubMed  Google Scholar 

  15. Fox, I.H. & Kelley, W.N. J. Biol. Chem. 246, 5739–5748 (1971).

    CAS  PubMed  Google Scholar 

  16. Hove-Jensen, B., Harlow, K.W., King, C.J. & Switzer, R.L. J. Biol. Chem. 261, 6765–6771 ( 1986).

    CAS  PubMed  Google Scholar 

  17. Gibson, K.J., Schubert, K.R. & Switzer, R.L. J. Biol. Chem. 257, 2391– 2396 (1982).

    CAS  PubMed  Google Scholar 

  18. Schubert, K.R., Switzer, R.L. & Shelton, E. J. Biol. Chem. 250, 7492– 7500 (1975).

    CAS  PubMed  Google Scholar 

  19. Miller, G.A., Rosenzweig, S. Jr. & Switzer, R.L. Arch. Biochem. Biophys. 171, 732–736 (1975).

    Article  CAS  Google Scholar 

  20. Bower, S.G., Harlow, K.W., Switzer, R.L. & Hove-Jensen, B. J. Biol. Chem. 264, 10287–10291 (1989).

    CAS  PubMed  Google Scholar 

  21. Becker, M.A., Taylor, W., Smith, P.R. & Ahmed, M. Adv. Exp. Med. Biol. 49, 281–306 ( 1979).

    CAS  Google Scholar 

  22. Gallois, R., Prévôt, J.-C., Clément, A. & Jacob, J.-L. Plant Physiol. 115, 847–852 (1997).

    Article  CAS  Google Scholar 

  23. Switzer, R.L. J. Biol. Chem. 245, 483–495 (1970).

    CAS  PubMed  Google Scholar 

  24. Krahn, J.M. et al. Biochemistry 36, 11061– 11068 (1997).

    Article  CAS  Google Scholar 

  25. Scapin, G., Ozturk, D.H., Grubmeyer, C. & Sacchettini, J.C. Biochemistry 34, 10744–10754 (1995).

    Article  CAS  Google Scholar 

  26. Tao, W., Grubmeyer, C. & Blanchard, J.S. Biochemistry 35, 14– 21 (1996).

    Article  CAS  Google Scholar 

  27. Carter, A.T. et al. Yeast 10, 1031–1044 (1994).

    Article  CAS  Google Scholar 

  28. Ashihara, H. Z. Pflanzenfysiol. 81, 379–392 (1977).

    Article  Google Scholar 

  29. Krath, B.N. & Hove-Jensen, B. Plant Physiol. 119 , 497–506 (1999).

    Article  CAS  Google Scholar 

  30. Bentsen, A.-.K., Larsen, T.A., Kadziola, A., Larsen, S. & Harlow, K.W. Proteins 24, 238–246 (1996).

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  32. Roussel, A. & Cambillau, C. TURBO-FRODO (Marseille, France; 1992).

  33. Brünger, A.T. X-PLOR 3.1 (Yale University Press, New Haven; 1993).

    Google Scholar 

  34. Switzer, R.L. & Gibson, K.J. Methods Enzymol. 51 , 3–11 (1978).

    Article  CAS  Google Scholar 

  35. Barton, G.J., Newman, R.H., Freemont, P.F. & Crumpton, M.J., Eur. J. Biochem. 198, 749–760 (1991).

    Article  CAS  Google Scholar 

  36. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277B , 505–524 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

Support from the Danish National Research Foundation is gratefully acknowledged. We are grateful to the EMBL Hamburg outstation DESY for beam time and thank W. Rypniewski for his help during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sine Larsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksen, T., Kadziola, A., Bentsen, AK. et al. Structural basis for the function of Bacillus subtilis phosphoribosyl-pyrophosphate synthetase. Nat Struct Mol Biol 7, 303–308 (2000). https://doi.org/10.1038/74069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing