Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Rac–RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI

Abstract

Rho family-specific guanine nucleotide dissociation inhibitors (RhoGDIs) decrease the rate of nucleotide dissociation and release Rho proteins such as RhoA, Rac and Cdc42 from membranes, forming tight complexes that shuttle between cytosol and membrane compartments. We have solved the crystal structure of a complex between the RhoGDI homolog LyGDI and GDP-bound Rac2, which are abundant in leukocytes, representing the cytosolic, resting pool of Rho species to be activated by extracellular signals. The N-terminal domain of LyGDI (LyN), which has been reported to be flexible in isolated RhoGDIs, becomes ordered upon complex formation and contributes more than 60% to the interface area. The structure is consistent with the C-terminus of Rac2 binding to a hydrophobic cavity previously proposed as isoprenyl binding site. An inner segment of LyN forms a helical hairpin that contacts mainly the switch regions of Rac2. The architecture of the complex interface suggests a mechanism for the inhibition of guanine nucleotide dissociation that is based on the stabilization of the magnesium (Mg2+) ion in the nucleotide binding pocket.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the Rac2–LyGDI complex.
Figure 2: Complex interface in sequence and structure.
Figure 3: Surface representation and hydrophobic cavity.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Van Aelst, L. & D'Souza-Schorey, C. Genes Dev. 11, 2295–2322 (1997).

    Article  CAS  Google Scholar 

  2. Bourne, H.R. & Sanders, D.A. Nature 348, 125–131 (1990).

    Article  CAS  Google Scholar 

  3. Scherle, P., Behrens, T. & Staudt, L.M. Proc. Natl. Acad. Sci. USA 90, 7568–7572 (1993).

    Article  CAS  Google Scholar 

  4. Keep, N.H. et al. Structure 5, 623–633 (1997).

    Article  CAS  Google Scholar 

  5. Gosser, Y.Q. et al. Nature 387, 814–819 (1997).

    Article  CAS  Google Scholar 

  6. Danley, D.E., Chuang, T.H. & Bokoch, G.M. J. Immunol. 157, 500–503 (1996).

    CAS  PubMed  Google Scholar 

  7. Wei, Y. et al. Nature Struct. Biol. 4, 699–703 (1997).

    Article  CAS  Google Scholar 

  8. Platko, J.V. et al. Proc. Natl. Acad. Sci. USA 90, 2974–2978 (1995).

    Article  Google Scholar 

  9. Na, S. et al. J. Biol. Chem. 271, 11209–11213 (1996).

    Article  CAS  Google Scholar 

  10. Wu, W.J., Leonard, D.A., Cerione, R.A. & Manor, D. J. Biol. Chem. 272, 26153–261538 (1997).

    Article  CAS  Google Scholar 

  11. Hirshberg, M., Stockley, R.W., Dodson, G. & Webb, M.R. Nature Struct. Biol. 4, 147–152 (1997).

    Article  CAS  Google Scholar 

  12. Ueda, T., Kikuchi, A., Ohga, N., Yamamoto, J. & Takai, Y. J. Biol. Chem. 265, 9373–9380 (1990).

    CAS  PubMed  Google Scholar 

  13. Sasaki, T., Kato, M. & Takai, Y. J. Biol. Chem. 268, 23959–23963 (1993).

    CAS  PubMed  Google Scholar 

  14. Chuang, T.H., Xu, X., Knaus, U.G., Hart, M.J. & Bokoch, G.M. J. Biol. Chem. 268, 775–778 (1993).

    CAS  PubMed  Google Scholar 

  15. Newcombe, A.R., Stockley, R.W., Hunter, J.L. & Webb, M.R. Biochemistry 38, 6879–6886 (1999).

    Article  CAS  Google Scholar 

  16. Hancock, J.F. & Hall, A. EMBO J. 12, 1915–1921 (1993).

    Article  CAS  Google Scholar 

  17. Nomanbhoy, T.K. & Cerione, R.A. J. Biol. Chem. 271, 10004–10009 (1996).

    Article  CAS  Google Scholar 

  18. Hart, M.J. et al. Science 258, 812–815 (1992).

    Article  CAS  Google Scholar 

  19. Rittinger, K., Walker, P.A., Eccleston, J.F., Smerdon, S.J. & Gamblin, S.J. Nature 389, 758–762 (1997).

    Article  CAS  Google Scholar 

  20. Kikuchi, A. et al. J. Biol. Chem. 267, 14611–14615 (1992).

    CAS  PubMed  Google Scholar 

  21. Li, R. & Zheng, Y. J. Biol. Chem. 272, 4671–4679 (1997).

    Article  CAS  Google Scholar 

  22. Boriack-Sjodin, A., Margarit, S.M., Bar-Sagi, D. & Kuriyan, J. Nature 394, 337–343 (1998).

    Article  CAS  Google Scholar 

  23. Goldberg, J. Cell 95, 237–248 (1998).

    Article  CAS  Google Scholar 

  24. Abdul-Manan, N. et al. Nature 399, 379–383 (1999).

    Article  CAS  Google Scholar 

  25. Mott, H.R. et al. Nature 399, 384–388 (1999).

    Article  CAS  Google Scholar 

  26. Hori, Y. et al. Oncogene 6, 515–522 (1991).

    CAS  PubMed  Google Scholar 

  27. Nomanbhoy, T.K., Erickson, J.W. & Cerione, R.A. Biochemistry 38, 1744–1750 (1999).

    Article  CAS  Google Scholar 

  28. Feltham, J.L. et al. Biochemistry 36, 8755–8766 (1997).

    Article  CAS  Google Scholar 

  29. Geyer, M., et al. Biochemistry. 35, 10308–10320 (1996).

    Article  CAS  Google Scholar 

  30. Tanaka, K., Sasaki, T. & Takai, Y. Methods Enzymol. 256, 41–49 (1995).

    Article  CAS  Google Scholar 

  31. Illenberger, D. et al. EMBO J. 17, 6241–6249 (1998).

    Article  CAS  Google Scholar 

  32. Kabsch, W. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  33. Collaborative Computational Project Number 4. CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  34. Jones, T.A. & Kjelgaard, M. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  35. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  36. Kraulis, P.J. J. Appl.Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Merrit, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

  38. Nicholls, A., Sharp, K.A & Honig, B. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  39. Longenecker, K. et al. Acta Crystallogr. D 55, 1503–1515 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Wittinghofer for initiating the collaboration, for critical comments on the manuscript and encouragement, the EMBL Grenoble outstation, in particular A. Perrakis for providing support for measurements on the microfocus beam line (ID13) at the ESRF under the European Union TMR/LSF Programme, EMBL Heidelberg for preliminary mass spectrometry experiments, B. Prakash and A. Becker for discussions, W. Kabsch for discussion of crystallography, and K. Holmes for continuous support. K.S. thanks the Peter und Traudl Engelhorn Stiftung (Penzberg, Germany) for support in the initial phase of the project. This work was supported in part by grants from the Deutsche Forschungsgemeinschaft and the Medical Faculty of the University of Ulm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Scheffzek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffzek, K., Stephan, I., Jensen, O. et al. The Rac–RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI. Nat Struct Mol Biol 7, 122–126 (2000). https://doi.org/10.1038/72392

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing