Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase

Abstract

Paramyxoviruses are the main cause of respiratory disease in children. One of two viral surface glycoproteins, the hemagglutinin-neuraminidase (HN), has several functions in addition to being the major surface antigen that induces neutralizing antibodies. Here we present the crystal structures of Newcastle disease virus HN alone and in complex with either an inhibitor or with the β-anomer of sialic acid. The inhibitor complex reveals a typical neuraminidase active site within a β-propeller fold. Comparison of the structures of the two complexes reveal differences in the active site, suggesting that the catalytic site is activated by a conformational switch. This site may provide both sialic acid binding and hydrolysis functions since there is no evidence for a second sialic acid binding site in HN. Evidence for a single site with dual functions is examined and supported by mutagenesis studies. The structure provides the basis for the structure-based design of inhibitors for a range of paramyxovirus-induced diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations of the crystal structure of HN.
Figure 2: Structure based sequence alignment of HN from seven paramyxoviruses:
Figure 3: The active site.
Figure 4: Electron density for the HN–ligand complexes.
Figure 5: Comparison of the two crystal forms.
Figure 6: Mapping of seven Mab sites37 onto the surface of NDV HN.
Figure 7: Biological activities of NDV HN mutants.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Choppin, P.W. & Scheid, A. The role of viral glycoproteins in adsorption, penetration and pathogenicity of viruses. Rev. Infect. Dis. 2, 40–61 ( 1980).

    Article  CAS  Google Scholar 

  2. Lamb, R.A. & Kolakofsky, D. In Fundamental virology, 3rd Edition. The paramyxoviruses (eds, Fields, B.N. et al.) 577–604 (Lippincott Raven; 1996).

    Google Scholar 

  3. Bousse, T., Takimoto, T., Gorman, W.L., Takahashi, T. & Portner, A. Regions on the hemagglutinin-neuraminidase proteins of human parainfluenza virus type-1 and sendai virus important for membrane fusion. Virology 204, 506– 514 (1994).

    Article  CAS  Google Scholar 

  4. Deng, R.T., Wang, Z.Y., Mirza, A.M. & Iorio, R.M. Localization of a domain on the paramyxovirus attachment protein required for the promotion of cellular fusion by its homologous fusion protein spike. Virology 209, 457–469 ( 1995).

    Article  CAS  Google Scholar 

  5. Sergel, T., Mcginnes, L.W., Peeples, M.E. & Morrison, T.G. The attachment function of the Newcastle-disease virus hemagglutinin-neuraminidase protein can be separated from fusion promotion by mutation. Virology 193, 717–726 ( 1993).

    Article  CAS  Google Scholar 

  6. Tanabayashi, K. & Compans, R.W. Functional interaction of paramyxovirus glycoproteins: identification of a domain in sendai virus HN which promotes cell fusion. J. Virol. 70, 6112–6118 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bousse, T., Takimoto, T. & Portner, A. A single amino-acid change enhances the fusion promotion activity of human parainfluenza virus type-1 hemagglutinin-neuraminidase glycoprotein . Virology 209, 654–657 (1995).

    Article  CAS  Google Scholar 

  8. Tsurudome, M, et al. Identification of regions on the hemagglutinin-neuraminidase protein of human parainfluenza virus type-2 important for promoting cell fusion . Virology 213, 190–203 (1995).

    Article  CAS  Google Scholar 

  9. Watowich, S.J., Skehel, J.J. & Wiley, D.C. Crystal structures of influenza-virus hemagglutinin in complex with high-affinity receptor analogs. Structure 2, 719–731 ( 1994).

    Article  CAS  Google Scholar 

  10. Von Itzstein, M. et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363, 418– 423 (1993).

    Article  CAS  Google Scholar 

  11. Kim, C.U. et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119, 681–690 (1997).

    Article  CAS  Google Scholar 

  12. Markwell, M.K. & Fox, C.F. Protein-protein interactions within paramyxoviruses identified by native disulfide binding or reversible chemical cross-linking. J. Virol. 33, 152–166 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Morrison, T.G. Structure, function, and intracellular processing of paramyxovirus membrane proteins. Virus Res. 10, 113– 135 (1988).

    Article  CAS  Google Scholar 

  14. Sheehan, J.P., Iorio, R.M., Syddall, R.J., Glickman, R.L. & Bratt, M.A. Reducing agent-sensitive dimerization of the hemagglutinin-neuraminidase glycoprotein of Newcastle-disease virus correlates with the presence of cysteine at residue 123. Virology 161, 603–606 ( 1987).

    Article  CAS  Google Scholar 

  15. Mcginnes, L.W. & Morrison, T.G. The role of the individual cysteine residues in the formation of the mature, antigenic HN protein of Newcastle disease virus. Virology 200 , 470–483 (1994).

    Article  CAS  Google Scholar 

  16. Takimoto, T., Taylor, G.L., Crennell, S.J., Scroggs, R.A. & Portner, A. Crystallization of Newcastle disease virus hemagglutinin-neuraminidase glycoprotein. Virology 270, 208–214 ( 2000).

    Article  CAS  Google Scholar 

  17. Taylor, G. Sialidases: structures, biological significance and therapeutic potential . Curr. Opin. Struct. Biol. 6, 830– 837 (1996).

    Article  CAS  Google Scholar 

  18. Colman, P.M., Hoyne, P.A. & Lawrence, M.C. Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase. J. Virol. 67, 2972–2980 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Langedijk, J.P.M., Daus, F.J. & vanoirschot, J.T. Sequence and structure alignment of paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J. Virol. 71, 6155– 6167 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pitt, J.J., dasilva, E. & Gorman, J.J. Determination of the disulfide bond arrangement of Newcastle disease virus hemagglutinin neuraminidase: correlation with a beta-sheet propeller structural fold predicted for paramyxoviridae attachment proteins . J. Biol. Chem. 275, 6469– 6478 (2000).

    Article  CAS  Google Scholar 

  21. Mcginnes, L.W. & Morrison, T.G. The role of individual oligosaccharide chains in the activities of the HN glycoprotein of Newcastle-disease virus. Virology 212, 398–410 (1995).

    Article  CAS  Google Scholar 

  22. Burmeister, W.P., Henrissat, B., Bosso, C., Cusack, S. & Ruigrok, R.W.H. Influenza-B virus neuraminidase can synthesize its own inhibitor. Structure 1, 19–26 (1993).

    Article  CAS  Google Scholar 

  23. Taylor, N.R. & Vonitzstein, M. Molecular modeling studies on ligand-binding to sialidase from influenza-virus and the mechanism of catalysis. J. Med. Chem. 37, 616– 624 (1994).

    Article  CAS  Google Scholar 

  24. Barroso, I.M., Moralejo, F.J. & Villar, E. Ionic dependence of the sialidase activity of hemagglutinin-neuraminidase glycoprotein in Newcastle-disease virus membrane . Biochem. Soc. Trans. 22, S366 (1994).

    Article  Google Scholar 

  25. Chong, A.K.J., Pegg, M.S., Taylor, N.R. & Vonitzstein, M. Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza-virus. Eur. J. Biochem. 207 , 335–343 (1992).

    Article  CAS  Google Scholar 

  26. Varghese, J.N., McKimmbreschkin, J.L., Caldwell, J.B., Kortt, A.A. & Colman, P.M. The structure of the complex between influenza-virus neuraminidase and sialic-acid, the viral receptor. Proteins 14, 327– 332 (1992).

    Article  CAS  Google Scholar 

  27. Varghese, J.N. et al. Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc. Natl Acad. Sci. USA 94, 11808–11812 ( 1997).

    Article  CAS  Google Scholar 

  28. Mirza, A.M., Deng, R.T. & Iorio, R.M. Site-directed mutagenesis of a conserved hexapeptide in the paramyxovirus hemagglutinin-neuraminidase glycoprotein: effects on antigenic structure and function. J. Virol. 68, 5093–5099 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sheehan, J.P. & Iorio, R.M. A single amino-acid substitution in the hemagglutinin-neuraminidase of Newcastle-disease virus results in a protein-deficient in both functions. Virology 189, 778–781 (1992).

    Article  CAS  Google Scholar 

  30. Deng, R.T. et al. Mutations in the Newcastle disease virus hemagglutinin-neuraminidase protein that interfere with its ability to interact with the homologous F protein in the promotion of fusion. Virology 253, 43–54 (1999).

    Article  CAS  Google Scholar 

  31. Morrison, T.G. & Portner, A. In Paramyxoviruses. Structure, function and intracellular processing of the glycoproteins of paramyxoviridae (ed. Kingsbuy, D.W.) 347–382, (Plenum, New York; 1991).

    Google Scholar 

  32. Scheid, A. & Choppin, P.W. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57, 470 –490 (1974).

    Article  Google Scholar 

  33. Merz, D.C., Prehm, P., Scheid, A. & Choppin, P.W. Inhibition of the neuraminidase of paramyxoviruses by halide-ions: a possible means of modulating the two activities of the HN protein. Virology 112, 296–305 (1981).

    Article  CAS  Google Scholar 

  34. Thompson, S.D. & Portner, A. Localization of functional sites on the hemagglutinin neuraminidase glycoprotein of sendai virus by sequence-analysis of antigenic and temperature-sensitive mutants . Virology 160, 1–8 (1987).

    Article  CAS  Google Scholar 

  35. Weis, W. et al. Structure of the influenza-virus hemagglutinin complexed with its receptor, sialic-acid. Nature 333, 426 –431 (1988).

    Article  CAS  Google Scholar 

  36. Yusoff, K., Nesbit, M., Mccartney, H., Emmerson, P.T. & Samson, A.C.R. Mapping of three antigenic sites on the hemagglutinin-neuraminidase protein of Newcastle-disease virus. Virus Res. 11, 319– 333 (1988).

    Article  CAS  Google Scholar 

  37. Iorio, R.M., Glickman, R.L., Riel, A.M., Sheehan, J.P. & Bratt, M.A. Functional and neutralization profile of seven overlapping antigenic sites on the HN glycoprotein of Newcastle-disease virus: monoclonal antibodies to some sites prevent viral attachment. Virus Res. 13, 245–261 ( 1989).

    Article  CAS  Google Scholar 

  38. Iorio, R.M. et al. Identification of amino-acid residues important to the neuraminidase activity of the HN glycoprotein of Newcastle-disease virus. Virology 173, 196–204 ( 1989).

    Article  CAS  Google Scholar 

  39. Sastre, A.G., Cobaleda, C., Cabezas, J.A. & Villar, E. On the inhibition mechanism of the sialidase activity from Newcastle disease virus. Biol. Chem. 372, 923– 927 (1991).

    Google Scholar 

  40. Sagrera, A., Cobaleda, C., Munozbarroso, I., Shnyrov, V. & Villar, E. Modulation of the neuraminidase activity of HN protein from Newcastle disease virus by substrate binding and conformational change: kinetic and thermal denaturation studies. Biochem. Mol. Biol. 37, 717–727 (1995).

    CAS  Google Scholar 

  41. Mahon, P.J., Deng, R.T., Mirza, A.M. & Iorio, R.M. Cooperative neuraminidase activity in a paramyxovirus. Virology 213, 241–244 (1995).

    Article  CAS  Google Scholar 

  42. Deng, R.T., et al. Mutations in the Newcastle disease virus hemagglutinin-neuraminidase protein that interfere with its ability to interact with the homologous F protein in the promotion of fusion. Virology 253, 43–54 (1999).

    Article  CAS  Google Scholar 

  43. Collaborative Computational Project, Number 4. CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  44. Jones, A.T., Zhou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  45. Brunger, A.T., et al. Crystallography andNMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  46. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by The Wellcome Trust, the Royal Society, the National Institute of Allergy and Infectious Disease, a Cancer Center Support (CORE) grant, the American Lebanese Syrian Associated charities (ALSAC) of St. Jude Children's Research Hospital and EU TMR/LSF grants for access to the Hamburg and Grenoble synchrotrons. We thank staff at DESY, Hamburg, for their assistance, and the EMBL Grenoble Outstation for providing support for measurements at the ESRF. We thank Walter Ward and Rupert Russell for useful discussions, and Ravi Kartha for carrying out the sialyllactose thin-layer chromatography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crennell, S., Takimoto, T., Portner, A. et al. Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase . Nat Struct Mol Biol 7, 1068–1074 (2000). https://doi.org/10.1038/81002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing