Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome

Abstract

Cryo-electron microscopy has been used to visualize elongation factor G (EF-G) on the 70S ribosome in GDP and GTP states. GTP hydrolysis is required for binding of all the domains of EF-G to the pretranslocational complex and for the completion of translocation. In addition, large conformational changes have been identified in the ribosome. The head of the 30S subunit shifts toward the L1 protein side, and the L7/L12 stalk becomes bifurcated upon EF-G binding. Upon GTP hydrolysis, the bifurcation is reversed and an arc-like connection is formed between the base of the stalk and EF-G.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional cryo-EM maps.
Figure 2: Difference maps obtained by subtracting the three-dimensional map of the ribosome occupied by P-site tRNA11 from the three-dimensional maps of various EF-G–ribosome complexes overlaid on the 15 Å resolution map of the 70S ribosome11.
Figure 3: a, Stereo view comparison of masses of densities (wire-mesh contours) related to EF-G in the 70S–EF-G–GMPP(CH2)P complex (magenta) superimposed with the corresponding density obtained from the 70S–(tRNA)2–EF-G–GMPP(CH2)P complex (green), prepared using a higher concentration of EF-G.
Figure 4: Relative movement of the 30S subunit with respect to the 50S subunit upon EF-G–GMPP(CH2)P binding to the 70S ribosome.
Figure 5: Proposed sequence of events of the translocation reaction.

Similar content being viewed by others

References

  1. Nishizuka, Y. & Lipmann, F. Proc. Natl. Acad. Sci. USA 55, 212–219 (1966).

    Article  CAS  Google Scholar 

  2. Chinali, G. & Parmeggiani, A. Eur. J. Biochem. 125, 415–421 (1982).

    Article  CAS  Google Scholar 

  3. Spirin, A.S. Prog. Nucleic Acid Res. Mol. Biol. 32, 75– 114 (1985).

    Article  CAS  Google Scholar 

  4. Modolell, J., Girbes, T. & Vazquez, D. FEBS Lett. 60, 109– 113 (1975).

    Article  CAS  Google Scholar 

  5. Rodnina, M.V., Savelsbergh, A., Katunin, V.I. & Wintermeyer, W. Nature 385, 37–41 ( 1997).

    Article  CAS  Google Scholar 

  6. Ævarsson, A. et al. EMBO J. 13, 3669–3677 (1994).

    Article  Google Scholar 

  7. Czworkowski, J., Wang, J., Steitz, T.A. & Moore, P.B. EMBO J. 13, 3661–3668 (1994).

    Article  CAS  Google Scholar 

  8. Agrawal, R.K., Penczek, P., Grassucci, R.A. & Frank, J. Proc. Natl. Acad. Sci. USA 95, 6134– 6138 (1998).

    Article  CAS  Google Scholar 

  9. Wilson, K.S. & Noller, H.F. Cell 92, 131–139 (1998).

    Article  CAS  Google Scholar 

  10. Willie, G.R., Richman, N., Godtfredson, W.O. & Bodley, J.W., Biochemistry 14, 1713–1718 (1975).

    Article  CAS  Google Scholar 

  11. Malhotra, A. et al. J. Mol. Biol. 280, 103– 116 (1998).

    Article  CAS  Google Scholar 

  12. Agrawal, R.K. et al. Proc. 14th Intl. Congr. Electron Microscopy 1, 717–718 (1998).

  13. Lill, R., & Wintermeyer, W. J. Mol. Biol. 196 , 137–148 (1987).

    Article  CAS  Google Scholar 

  14. Agrawal, R.K. et al. Science 271, 1000– 1002 (1996).

    Article  CAS  Google Scholar 

  15. Nissen, P. et al. Science 270, 1464– 1472 (1995).

    Article  CAS  Google Scholar 

  16. Abel, K., Yoder, M.D., Hilgenfeld, R. & Jurnak, F. Structure 4, 1153–1159 ( 1996).

    Article  CAS  Google Scholar 

  17. Czworkowski, J. & Moore, P.B. Biochemistry 36, 10327–10334 (1997).

    Article  CAS  Google Scholar 

  18. Traut, R.R. et al. Biochem. Cell Biol. 73, 949– 958 (1995).

    Article  CAS  Google Scholar 

  19. Stark, H. et al. Nature 389, 403–406 (1997).

    Article  CAS  Google Scholar 

  20. Hamman, B.D., Oleinikov, A.V., Jokhadze, G.G., Traut, R.R. & Jameson, D.M. Biochemistry 35, 16672–16679 (1996).

    Article  CAS  Google Scholar 

  21. Burma, D.P., Srivastava, S., Srivastava, A.K., Mahanti, S. & Dash, D., In Structure function and genetics of ribosomes (eds Hardesty, B. & Kramer, G.) 438– 453 (Springer-Verlag, New York; 1986).

    Book  Google Scholar 

  22. Wool, I.G., Gluck, A. & Endo, Y. Trends Biochem. Sci. 17, 266–269 (1992).

    Article  CAS  Google Scholar 

  23. Agrawal, R.K., Lata, K.R. & Frank, J., Intl. J. Biochem. Cell Biol. 31, 243–254 (1999).

    Article  CAS  Google Scholar 

  24. Gabashvili, I.S., Agrawal, R.K., Grassucci, R.A. & Frank J. J. Mol. Biol. 286, 1285–1291 (1999).

    Article  CAS  Google Scholar 

  25. Müller, F. & Brimacombe, R. J. Mol. Biol. 271, 524–544 ( 1997).

    Article  Google Scholar 

  26. Moazed, D. & Noller, H.F. Nature 342, 142–148 (1989).

    Article  CAS  Google Scholar 

  27. Agrawal, R.K. & Burma, D.P. J. Biol. Chem. 271, 21285–21291 (1996).

    Article  CAS  Google Scholar 

  28. Kjeldgaard M., Nyborg J. & Clark B.F., FASEB J. 10, 1347– 1368 (1996).

    Article  CAS  Google Scholar 

  29. Nierhaus, K.H. Biochemistry 29, 4997–5012 (1990).

    Article  CAS  Google Scholar 

  30. Wagenknecht, T., Grassucci, R. & Frank, J. J. Mol. Biol. 199, 137– 145 (1988).

    Article  CAS  Google Scholar 

  31. Zhu, J., Penczek, P.A., Schröder, R. & Frank, J. J. Struct. Biol. 118, 197–219 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Moore for providing the all-atom coordinates of the EF-G–GDPX-ray structure. This work was supported by grants from the National Institutes of Health and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, R., Heagle, A., Penczek, P. et al. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nat Struct Mol Biol 6, 643–647 (1999). https://doi.org/10.1038/10695

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing