Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of an 82-nucleotide RNA–DNA complex formed by the 10-23 DNA enzyme

Abstract

The structure of a large nucleic acid complex formed by the 10–23 DNA enzyme bound to an RNA substrate was determined by X–ray diffraction at 3.0 Å resolution. The 82–nucleotide complex contains two strands of DNA and two strands of RNA that form five double–helical domains. The spatial arrangement of these helices is maintained by two four–way junctions that exhibit extensive base–stacking interactions and sharp turns of the phosphodiester backbone stabilized by metal ions coordinated to nucleotides at these junctions. Although it is unlikely that the structure corresponds to the catalytically active conformation of the enzyme, it represents a novel nucleic acid fold with implications for the Holliday junction structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the 82–nucleotide RNA–DNA complex.
Figure 2: Stereo view of the RNA–DNA complex showing all nucleotides.
Figure 3: The structure of the four–way junction.
Figure 4: Stereo figure showing the experimental, solvent flattened MIR electron density map at 3.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Breaker, R.R. & Joyce, G.F. Chem. Biol. 1, 223–229 (1994).

    Article  CAS  Google Scholar 

  2. Cuenoud, B. & Szostak, J.W. Nature 375, 611–614 (1995).

    Article  CAS  Google Scholar 

  3. Breaker, R.R. Curr. Opin. Chem. Biol. 1, 26–31 (1997).

    Article  CAS  Google Scholar 

  4. Santoro, S.W. & Joyce, G.F. Proc. Natl. Acad. Sci. USA 94, 4262–4266 (1997).

    Article  CAS  Google Scholar 

  5. Santoro, S.W. & Joyce, G.F. Biochemistry 37,13330–13342 (1998).

    Article  CAS  Google Scholar 

  6. Cate, J.H., Hanna, R.L. & Doudna, J.A. Nature Struct. Biol. 4, 553 –558 (1997).

    Article  CAS  Google Scholar 

  7. Cowan, J.A. J. Inorg. Biochem. 49, 171–175 (1993).

    Article  CAS  Google Scholar 

  8. Mollegaard, N.E., Murchie, A.I.H., Lilley, D.M.J. & Nielsen, P.E. EMBO J. 13, 1508–1513 ( 1994).

    Article  CAS  Google Scholar 

  9. Heus, H.A. & Pardi, A. Science 253, 191–194 (1991).

    Article  CAS  Google Scholar 

  10. Privé, G.G., Heinemann, U., Chandrasegaran, L.K., Kopka, M.L. & Dickerson, R.E. Science 238, 498–504 (1987).

    Article  Google Scholar 

  11. Leonard, G.A. et al. Structure 2, 483–494 (1994).

    Article  CAS  Google Scholar 

  12. Cheong, C.J., Varani, G. & Tinoco, I. Jr. Nature 346, 680–682 (1990).

    Article  CAS  Google Scholar 

  13. Holbrook, S.R., Cheong, C., Tinoco, I. Jr. & Kim, S.H. Nature 353, 579–581 ( 1991).

    Article  CAS  Google Scholar 

  14. Holliday, R. Genet. Res. 5, 282–304 ( 1964).

    Article  Google Scholar 

  15. Sigal, N. & Alberts, B. J. Mol. Biol. 71, 789–793 (1972).

    Article  CAS  Google Scholar 

  16. Lilley, D.M.J. & Clegg, R.M. Annu. Rev. Biophys. Biomol. Struct. 22, 299–328 (1993).

    Article  CAS  Google Scholar 

  17. Seeman, N.C. & Kallenbach, N.R. Annu. Rev. Biophys. Biomol. Struct. 23, 53–86 ( 1994).

    Article  CAS  Google Scholar 

  18. Hargreaves, D. et al. Nature Struct. Biol. 5, 441– 446 (1998).

    Article  CAS  Google Scholar 

  19. Gopaul, D.N., Guo, F. & Van Duyne G.D. EMBO J. 17, 4175– 4187 (1998).

    Article  CAS  Google Scholar 

  20. Murchie, A.I.H. et al. Nature 341, 763–766 (1989).

    Article  CAS  Google Scholar 

  21. Cooper, J.P. & Hagerman, P.J. J. Mol. Biol. 198 , 711–719 (1987).

    Article  CAS  Google Scholar 

  22. Duckett, D.R. et al. Cell 55, 79–89 (1988).

    Article  CAS  Google Scholar 

  23. Churchill, M.E.A., Tullius, T.D., Kallenbach, N.R. & Seeman, N.C. Proc. Natl. Acad. Sci. USA 85, 4653– 4656 (1988).

    Article  CAS  Google Scholar 

  24. Chen, S., Heffron, F. & Chazin, W.J. Biochemistry 32, 319– 326 (1993).

    Article  CAS  Google Scholar 

  25. Duckett, D.R., Murchie, A.I.H. & Lilley, D.M.J. EMBO J. 9, 583– 590 (1990).

    Article  CAS  Google Scholar 

  26. Miick, S.M., Fee, R.S., Millar, D.P. & Chazin, W.J. Proc. Natl. Acad. Sci. USA 94, 9080–9084 ( 1997).

    Article  CAS  Google Scholar 

  27. Wincott, F. et al. Nucleic Acids Res. 23, 2677– 2684 (1995).

    Article  CAS  Google Scholar 

  28. CCP4. Acta Crystallogr. D50, 760–763 (1994).

  29. McRee, D.E. J. Mol. Graphics 10, 44–47 (1992).

    Article  Google Scholar 

  30. Brünger, A.T. X–PLOR 3.1: A system for Crystallography and NMR (Yale University Press, New Haven, Connecticut; 1993).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank E. Stura for crystallization advice, W. Chazin, D.E. McRee, S. Santoro and J. Williamson for helpful discussions, N. Kresge for help with data collection, and the staff at Stanford Synchrotron Radiation Laboratory for their generous assistance. NMR experiments were conducted at the TSRI Biomolecular NMR Laboratory with the assistance of W. Chazin. This work was funded by The Skaggs Institute for Chemical Biology (G.F.J.) and an NIH grant to C.D.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. David Stout or Gerald F. Joyce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowakowski, J., Shim, P., Prasad, G. et al. Crystal structure of an 82-nucleotide RNA–DNA complex formed by the 10-23 DNA enzyme. Nat Struct Mol Biol 6, 151–156 (1999). https://doi.org/10.1038/5839

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing