Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single protein misfolding events captured by atomic force microscopy

Abstract

Using single protein atomic force microscopy (AFM) techniques we demonstrate that after repeated mechanical extension/relaxation cycles, tandem modular proteins can misfold into a structure formed by two neighboring modules. The misfolding is fully reversible and alters the mechanical topology of the modules while it is about as stable as the original fold. Our results show that modular proteins can assume a novel misfolded state and demonstrate that AFM is able to capture, in real time, rare misfolding events at the level of a single protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible misfolding events captured by single protein AFM recordings of a polyprotein composed of tandem repeats of an immunoglobulin domain.
Figure 2: Unfolding of a 'skip' fold lengthens the contour length of the polyprotein by more than the simultaneous unfolding of two domains.
Figure 3: Folded polyproteins that harbor a 'skip' fold are shorter than correctly folded ones.
Figure 4: Misfolding events observed during mechanical unfolding/refolding cycles of the extracellular matrix protein tenascin.

Similar content being viewed by others

References

  1. Bork, P., Downing, A.K., Kieffer, B. & Campbell, I.D. Q. Rev. Biophys. 29, 119–167 (1996).

    Article  CAS  Google Scholar 

  2. Chothia,C. & Jones, E.Y. Annu. Rev. Biochem. 66, 823–862 ( 1997).

    Article  CAS  Google Scholar 

  3. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Science 276, 1109– 1112 (1997).

    Article  CAS  Google Scholar 

  4. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. Nature 393, 181–185 ( 1998).

    Article  CAS  Google Scholar 

  5. Ohashi, T., Kiehart, D.P. & Erickson, H.P. Proc. Natl. Acad. Sci. USA 96, 2153–2158 (1999).

    Article  CAS  Google Scholar 

  6. Erickson, H.P. Science 276, 1090–1092 ( 1997).

    Article  CAS  Google Scholar 

  7. Keller, T.C. Nature 387, 233–235 ( 1997).

    Article  CAS  Google Scholar 

  8. Hynes, R.O. Proc. Natl. Acad. Sci. 96, 2588–2590 (1999).

    Article  CAS  Google Scholar 

  9. Carrion-Vazquez, M. et al. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  Google Scholar 

  10. Improta, S., Politou, A.S. & Pastore, A. Structure 4, 323– 337 (1996).

    Article  CAS  Google Scholar 

  11. Marko, J.F. & Siggia, E.D. Macromolecules 28, 8759–8770 (1995).

    Article  CAS  Google Scholar 

  12. Improta, S. et al. J. Mol. Biol. 284, 761– 777 (1998).

    Article  CAS  Google Scholar 

  13. Aukhil, I., Joshi, P., Yan,Y. & Erickson, H.P. J. Biol. Chem. 268, 2542–2552 (1993).

    CAS  PubMed  Google Scholar 

  14. Clark, R.A, Erickson, H.P. & Springer, T.A. J. Cell. Biol. 137, 755– 765 (1997).

    Article  CAS  Google Scholar 

  15. Netzer, W. & Hartl, U.F. Nature 388, 343–349 (1997).

    Article  CAS  Google Scholar 

  16. Murray, A.J., Lewis, S.J., Barclay, A.N. & Brady, R.L. Proc. Natl. Acad. Sci. USA 92, 7337– 7741 (1995).

    Article  CAS  Google Scholar 

  17. Murray, A.J., Head, J.G., Barker, J.J. & Brady, R.L. Nature Struct. Biol. 5, 778–782 ( 1998).

    Article  CAS  Google Scholar 

  18. Hayes, M.V., Sessions, R.B., Brady, R.L. & Clarke, A.R. J. Mol. Biol. 285, 1857–1867 (1999).

    Article  CAS  Google Scholar 

  19. Evans, E. & Ritchie, K. Biophys. J. 76, 2439–2447 (1999).

    Article  CAS  Google Scholar 

  20. Florin, E.L. et al. Biosensors & Bioelectronics 10, 895–901 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank H.P. Erickson (Duke University) for providing the human tenascin protein. This work was supported by NIH grants to J.M.F., P.E.M. and A.F.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio M. Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberhauser, A., Marszalek, P., Carrion-Vazquez, M. et al. Single protein misfolding events captured by atomic force microscopy . Nat Struct Mol Biol 6, 1025–1028 (1999). https://doi.org/10.1038/14907

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing