Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase

Abstract

Pyruvate formate-lyase (PFL) from Escherichia coli uses a radical mechanism to reversibly cleave the C1-C2 bond of pyruvate using the Gly 734 radical and two cysteine residues (Cys 418, Cys 419). We have determined by X-ray crystallography the structures of PFL (non-radical form), its complex with the substrate analog oxamate, and the C418A,C419A double mutant. The atomic model (a dimer of 759-residue monomers) comprises a 10-stranded β/α barrel assembled in an antiparallel manner from two parallel five-stranded β-sheets; this architecture resembles that of ribonucleotide reductases. Gly 734 and Cys 419, positioned at the tips of opposing hairpin loops, meet in the apolar barrel center (Cα–Sγ = 3.7 Å). Oxamate fits into a compact pocket where C2 is juxtaposed with Cys 418Sγ (3.3 Å), which in turn is close to Cys 419Sγ (3.7 Å). Our model of the active site is suggestive of a snapshot of the catalytic cycle, when the pyruvate-carbonyl awaits attack by the Cys 418 thiyl radical. We propose a homolytic radical mechanismfor PFL that involves Cys 418 and Cys 419 both as thiyl radicals, with distinct chemical functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evidence for the binding of oxamate in the active site.
Figure 2: Stereo view of Cα traces of the PFL dimer in complex with oxamate.
Figure 3: Schematic representation of secondary structure of a PFL monomer.
Figure 4: Ribbon diagram of a monomer in stereo.
Figure 5: Stereo view of the (2Fo - Fc) electron density map, contoured at 1.05σ,
Figure 6: Structural similarity between PFL and NrdD.
Figure 7: Structure of the active site.
Figure 8: Proposed catalytic mechanism of PFL.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kessler, D. & Knappe, J. Anaerobic dissimilation of pyruvate. In Escherichia coli and Salmonella, cellular and molecular biology (eds Neidhardt, F.C. et al.) 199–205 (American Society for Microbiology, Washington, DC; 1996).

    Google Scholar 

  2. Knappe, J., Neugebauer, F.A., Blaschkowski, H. P. & Gänzler, M. Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc. Natl. Acad. Sci. USA 81, 1332– 1335 (1984).

    Article  CAS  Google Scholar 

  3. Wagner, A.F.V., Frey, M., Neugebauer, F.A., Schäfer, W. & Knappe, J. The free radical in pyruvate formate-lyase is located on glycine 734. Proc. Natl. Acad. Sci. USA 89, 996–1000 (1992).

    Article  CAS  Google Scholar 

  4. Frey, M., Rothe, M., Wagner, A.F.V. & Knappe, J. Adenosylmethionine-dependent synthesis of the glycyl radical in pyruvate formate-lyase by abstraction of the glycine C-2 pro-S hydrogen atom. Studies of [2H]glycine-substituted enzyme and peptides homologous to the glycine 734 site. J. Biol. Chem. 269, 12432– 12437 (1994).

    CAS  PubMed  Google Scholar 

  5. Külzer, R., Pils, T., Kappl, R., Hüttermann, J. & Knappe, J. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J. Biol. Chem. 273 , 4897–4903 (1998).

    Article  Google Scholar 

  6. Knappe, J., Blaschkowski, H.P., Gröbner, P. & Schmitt, T. Pyruvate formate-lyase of Escherichia coli: the acetyl-enzyme intermediate. Eur. J. Biochem. 50, 253– 263 (1974).

    Article  CAS  Google Scholar 

  7. Stubbe, J. & van der Donk, W.A. Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762 ( 1998).

    Article  CAS  Google Scholar 

  8. Knappe, J., Elbert, S., Frey, M. & Wagner, A.F.V. Pyruvate formate-lyase mechanism involving the protein-based glycyl radical. Biochem. Soc. Trans. 21, 731–734 (1993).

    Article  CAS  Google Scholar 

  9. Parast, C.V., Wong, K.K., Lewisch, S.A. & Kozarich, J.W. Hydrogen exchange of the glycyl radical of pyruvate formate-lyase is catalyzed by cysteine 419. Biochemistry 34, 2392– 2399 (1995).

    Google Scholar 

  10. Logan, D.T., Andersson, J., Sjöberg, B.-M. & Nordlund, P. A glycyl radical site in the crystal structure of a class III ribonucleotide reductase. Science 283, 1499– 1504 (1999).

    Article  CAS  Google Scholar 

  11. Uhlin, U. & Eklund, H. Structure of ribonucleotide reductase protein R1. Nature 370, 533– 539 (1994).

    Article  CAS  Google Scholar 

  12. Heβlinger, C., Fairhurst, S.A. & Sawers, G. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 27, 477–492 (1998).

    Article  Google Scholar 

  13. Reddy, S.C. et al. Dioxygen inactivation of pyruvate formate-lyase: EPR evidence for the formation of protein-based sulfinyl and peroxyl radicals. Biochemistry 37, 558–563 (1998).

    Article  CAS  Google Scholar 

  14. Unkrig, V., Neugebauer, F.A. & Knappe, J. The free radical in pyruvate formate-lyase. Characterization by EPR spectroscopy and involvement in catalysis as studied with the substrate-analogue hypophosphite. Eur. J. Biochem. 184, 723 –728 (1989).

    Article  CAS  Google Scholar 

  15. Himo, F. & Eriksson, L.A. Catalytic mechanism of pyruvate formate-lyase (PFL). A theoretical study. J. Am. Chem. Soc. 120, 11449–11455 (1998).

    Article  CAS  Google Scholar 

  16. Engel, C. & Wierenga, R. The diverse world of coenzyme A binding proteins. Curr. Opin. Struct. Biol. 6, 790–797 (1996).

    Article  CAS  Google Scholar 

  17. Plaga, W., Frank, R. & Knappe, J. Catalytic site mapping of pyruvate formate-lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate). Eur. J. Biochem. 178, 445–450 (1988).

    Article  CAS  Google Scholar 

  18. Sawers, G. Biochemistry, physiology and molecular biology of glycyl radical enzymes. FEMS Microbiol. Rev. 22, 543– 551 (1999).

    Article  Google Scholar 

  19. Rödel, W., Plaga, W., Frank, R. & Knappe, J. Primary structures of Escherichia coli pyruvate formate-lyase and pyruvate-formate-lyase-activating enzyme deduced from the DNA nucleotide sequences. Eur. J. Biochem. 177, 153–158 ( 1988).

    Article  Google Scholar 

  20. Knappe, J. & Wagner, A.F.V. Glycyl free radical in pyruvate formate-lyase: synthesis, structure characteristics, and involvement in catalysis. Methods Enzymol. 258, 343– 362 (1995).

    Article  CAS  Google Scholar 

  21. Kunkel, T.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82, 488– 492 (1985).

    Article  CAS  Google Scholar 

  22. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916– 924 (1988).

    Article  CAS  Google Scholar 

  23. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  24. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  25. Brünger, A.T. et al. Crystallographic & NMR system (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 ( 1998).

    Article  Google Scholar 

  26. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  27. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graphics 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  28. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  29. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  30. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505– 524 (1997).

    Article  CAS  Google Scholar 

  31. Diederichs, K. & Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol. 4, 269–275 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Logan for providing class III ribonucleotide reductase coordinates preceding their general release, G. Sawers for the host E. coli strain RM221, D. Madden, K. Scheffzek and I. Schlichting for critical discussions and help, C. Lantwin and E. Pai for contributions in the early phase of the project, H. Wagner for maintenance of the X-ray facilities at the MPI Heidelberg, and K. Holmes for continuous support. Financial support of this work (by grants to J.K.) came from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang Kabsch or Joachim Knappe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, A., Fritz-Wolf, K., Kabsch, W. et al. Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase . Nat Struct Mol Biol 6, 969–975 (1999). https://doi.org/10.1038/13341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing