Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the outer membrane active transporter FepA from Escherichia coli

Abstract

Integral outer membrane receptors for iron chelates and vitamin B 12 carry out specific ligand transport against a concentration gradient. Energy for active transport is obtained from the proton–motive force of the inner membrane through physical interaction with TonB–ExbB–ExbD, an inner membrane complex. Here we report the crystal structure of an active transport, outer membrane receptor at 2.4 Å resolution. Two distinct functional domains are revealed: (i) a 22–stranded β–barrel that spans the outer membrane and contains large extracellular loops which appear to function in ligand binding; and (ii) a globular N–terminal domain that folds into the barrel pore, inhibiting access to the periplasm and contributing two additional loops for potential ligand binding. These loops could provide a signaling pathway between the processes of ligand recognition and TonB–mediated transport. The blockage of the pore suggests that the N–terminal domain must undergo a conformational rearrangement to allow ligand transport into the periplasm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagram of FepA.
Figure 2: Topology of the FepA barrel, using amino acid sequence in one–letter code.
Figure 3: 2Fo – Fc stereo electron density map at 2.4 Å resolution, contoured at 1.4σ.
Figure 4: The fold of the polypeptide chain.
Figure 5: Blockage of the pore by the N–terminal domain as viewed from the periplasm.
Figure 6: Anomalous scattering difference Fourier map contoured at 4.0σ (violet) superimposed on a stereo ribbon diagram of FepA.
Figure 7: Interactions in the TonB box.

Similar content being viewed by others

References

  1. Braun, V., Hantke, K. & Köster, W. Bacterial iron transport: Mechanisms, genetics, and regulation. in Metal ions in biological systems volume 35: iron transport and storage in microorganisms, plants, and animals (eds Sigel, A. & Sigel, H.) 67–145 (Marcel Dekker, New York; 1998 ).

    Google Scholar 

  2. Stephens, D.L., Choe, M.D. & Earhart, C.F. Escherichia coli periplasmic protein FepB binds ferrienterobactin. Microbiology 141, 1647–1654 (1995).

    Article  CAS  Google Scholar 

  3. Chenault, S.S. & Earhart, C.F. Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease. Mol. Microbiol. 5, 1405– 1413 (1991).

    Article  CAS  Google Scholar 

  4. Shea, C.M. & McIntosh, M.A. Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic binding protein–dependent systems in Escherichia coli. Mol. Microbiol. 5, 1415– 1428 (1991).

    Article  CAS  Google Scholar 

  5. Langman, L., Young, I.G., Frost, G.E., Rosenberg, H. & Gibson, F. Enterochelin system of iron transport in Escherichia coli: mutations affecting ferric–enterochelin esterase. J. Bacteriol. 112, 1142–1149 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Loomis, L.D. & Raymond, K.N. Solution equilibria of enterobactin and metal–enterobactin complexes. Inorg. Chem. 30, 906–911 (1991).

    Article  CAS  Google Scholar 

  7. Karpishin, T.B., Dewey, T.M. & Raymond, K.N. The vanadium (IV) enterobactin complex: structural, spectroscopic, and electrochemical characterization. J. Am. Chem. Soc. 115, 1842–1851 (1993).

    Article  CAS  Google Scholar 

  8. Ecker, D.J., Matzanke, B.F. & Raymond, K.N. Recognition and transport of ferric enterobactin in Escherichia coli. J. Bacteriol. 167, 666–673 (1986).

    Article  CAS  Google Scholar 

  9. Zhou, X.H., Van der Helm, D. & Adjimani, J. Purification of outer membrane iron transport receptors from Echerichia coli by fast protein liquid chromatography: FepA and FecA. Biometals 6, 25–35 (1993).

    Article  CAS  Google Scholar 

  10. Payne, M.A. et al. Biphasic binding kinetics between FepA and its ligands. J. Biol. Chem. 272, 21950–21955 (1997).

    Article  CAS  Google Scholar 

  11. Bradbeer, C. The proton motive force drives the outer membrane transport of cobalamin in Escherichia coli. J. Bacteriol. 175, 3146–3150 (1993).

    Article  CAS  Google Scholar 

  12. Braun, V. Energy–coupled transport and signal transduction through the gram–negative outer membrane via TonB–ExbB–ExbD–dependent receptor proteins. FEMS Microbiol. Rev. 16, 295– 307 (1995).

    Article  CAS  Google Scholar 

  13. Skare, J.T., Ahmer, B.M., Seachord, C.L., Darveau, R.P. & Postle, K. Energy transduction between membranes. TonB, a cytoplasmic membrane protein, can be chemically cross–linked in vivo to the outer membrane receptor FepA. J. Biol. Chem. 268, 16302–16308 (1993).

    CAS  PubMed  Google Scholar 

  14. Larsen, R.A., Foster–Hartnett, D., McIntosh, M.A. & Postle, K. Regions of Escherichia coli TonB and FepA proteins essential for in vivo physical interactions. J. Bacteriol. 179, 3213–3221 (1997).

    Article  CAS  Google Scholar 

  15. Kadner, R.J. Vitamin B12 transport in Escherichia coli: energy coupling between membranes. Mol. Microbiol. 4, 2027– 2033 (1990).

    Article  CAS  Google Scholar 

  16. Smith, B.S. et al. Crystallization and preliminary X–ray analysis of ferric enterobactin receptor FepA, an integral membrane protein from Escherichia coli. Acta Crystallogr. D 54, 697– 699 (1998).

    Article  CAS  Google Scholar 

  17. Michel, H. Crystallization of membrane proteins. Trends Biochem. Sci. 8, 56–59 (1983).

    Article  CAS  Google Scholar 

  18. Weiss, M.S., Wacker, T., Weckesser, J., Welte, W. & Schulz, G.E. The three–dimensional structure of porin from Rhodobacter capsulatus at 3 Å resolution. FEBS Lett. 267, 268–272 (1990).

    Article  CAS  Google Scholar 

  19. Cowan, S.W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727– 733 (1992).

    Article  CAS  Google Scholar 

  20. Schirmer, T., Keller, T.A., Wang, Y.–F. & Rosenbusch, J.P. Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. Science 267, 512– 514 (1995).

    Article  CAS  Google Scholar 

  21. Forst, D., Welte, W., Wacker, T. & Diederichs, K. Structure of the sucrose–specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nature Struct. Biol. 5, 37–46 (1998).

    Article  CAS  Google Scholar 

  22. Lesk, A.M., Brändén, C.–I. & Chothia, C. Structural principles of a/b barrel proteins: the packing of the interior of the sheet. Proteins 5, 139–148 (1989).

    Article  CAS  Google Scholar 

  23. Struyve, M., Moons, M. & Tommassen, J. Carboxy–terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J. Mol. Biol. 218, 141–148 (1991).

    Article  CAS  Google Scholar 

  24. Murphy, C.K., Kalve, V.I. & Klebba, P.E. Surface topology of the Escherichia coli K–12 ferric enterobactin receptor. J. Bacteriol. 172, 2736–2746 (1990).

    Article  CAS  Google Scholar 

  25. Klug, C.S., Su, W.Y. & Feix, J.B. Mapping of the residues involved in a proposed b–strand located in the ferric enterobactin receptor FepA using site–directed spin–labeling. Biochemistry 36, 13027–13033 (1997).

    Article  CAS  Google Scholar 

  26. Lathrop, J.T., Wei, B.Y., Touchie, G.A. & Kadner, R.J. Sequences of the Escherichia coli BtuB protein essential for its insertion and function in the outer membrane. J. Bacteriol. 177, 6810–6819 (1995).

    Article  CAS  Google Scholar 

  27. Carmel, G., Hellstern, D., Henning, D. & Coulton, J.W. Insertion mutagenesis of the gene encoding the ferrichrome–iron receptor of Escherichia coli K–12. J. Bacteriol. 172, 1861–1869 (1990).

    Article  CAS  Google Scholar 

  28. Koebnik, R. & Braun, V. Insertion derivatives containing segments of up to 16 amino acids identify surface– and periplasm–exposed regions of the FhuA outer membrane receptor of Escherichia coli K–12. J. Bacteriol. 175, 826– 839 (1993).

    Article  CAS  Google Scholar 

  29. Armstrong, S.K. & McIntosh, M.A. Epitope insertions define functional and topological features of the Escherichia coli ferric enterobactin receptor. J. Biol. Chem. 270, 2483–2488 (1995).

    Article  CAS  Google Scholar 

  30. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  31. Lundrigan, M.D. & Kadner, R.J. Nucleotide sequence of the gene for the ferrienterochelin receptor FepA in Escherichia coli. Homology among outer membrane receptors that interact with TonB. J. Biol. Chem. 261, 10797–10801 (1986).

    CAS  PubMed  Google Scholar 

  32. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  33. Van der Helm, D. The physical chemistry of bacterial outer–membrane siderophore receptor proteins. in Metal ions in biological systems Volume 35: iron transport and storage in microorganisms, plants, and animals (eds Sigel, A. & Sigel, H.) 355–401 (Marcel Dekker, New York; 1998).

    Google Scholar 

  34. Newton, S.M.C. et al. Double mutagenesis of a positive charge cluster in the ligand–binding site of the ferric enterobactin receptor, FepA. Proc. Natl. Acad. Sci. USA 94, 4560–4565 (1997).

    Article  CAS  Google Scholar 

  35. Postle, K. TonB protein and energy transduction between membranes. J. Bioenerg. Biomembr. 25, 591–601 (1993).

    CAS  PubMed  Google Scholar 

  36. Moeck, G.S., Coulton, J.W. & Postle, K. Cell envelope signaling in Escherichia coli ligand binding to the ferrichrome–iron receptor FhuA promotes interaction with the energy–transducing protein TonB. J. Biol. Chem. 272, 28391–28397 (1997).

    Article  CAS  Google Scholar 

  37. Miller, M.J. & Malouin, F. Microbial iron chelators as drug delivery agents: the rational design and synthesis of siderophore–drug conjugates. Acc. Chem. Res. 26, 241– 249 (1993).

    Article  CAS  Google Scholar 

  38. Wiener, M., Freymann, D., Ghosh, P. & Stroud, R.M. Crystal structure of colicin Ia. Nature 385, 461– 464 (1997).

    Article  CAS  Google Scholar 

  39. Rutz, J.M. et al. Formation of a gated channel by a ligand–specific transport protein in the bacterial outer membrane. Science 258, 471–475 (1992).

    Article  CAS  Google Scholar 

  40. Liu, J., Rutz, J.M., Klebba, P.E. & Feix, J.B. A site–directed spin–labeling study of ligand–induced conformational change in the ferric enterobactin receptor, FepA. Biochemistry 33, 13274–13283 (1994).

    Article  CAS  Google Scholar 

  41. Jalal, M.A.F. & Van der Helm, D. Purification and crystallization of ferric enterobactin receptor protein, FepA, from the outer membranes of Escherichia coli UT5600/pBB2. FEBS Lett. 243, 366–370 (1989).

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X–ray diffraction data collected in oscillation mode. Meth. Enz. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  43. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  44. Otwinowski, Z. Maximum likelihood refinement of heavy atom parameters. in Isomorphous Replacement and Anomalous Scattering. Proceedings of the CCP4 study weekend 25–26 January 1991. (eds Wolf, W., Evans, P.R. & Leslie, A.G.W.) 80–86 (SERC Daresbury Laboratory, Warrington, UK; 1991).

    Google Scholar 

  45. Cowtan, K.D. & Main, P. Phase combination and cross validation in iterated density–modification calculations. Acta Crystallogr. D52, 43–48 (1996).

    CAS  Google Scholar 

  46. Jones, T.A., Zou, J.–Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  47. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  48. Xia, D. et al. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277, 60–66 (1997).

    Article  CAS  Google Scholar 

  49. Esnouf, R.M. An extensively modified version of Molscript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 133–138 (1997).

    Google Scholar 

  50. Evans, S.V. SETOR: hardware–lighted three–dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Wang for help with in–house data collection; and M. Capel and C. Ogata for help with synchrotron data collection. D.v.d.H. acknowledges support from the NIH. S.K.B. acknowledges support from the American Cancer Society. J.D. is an Investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Deisenhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchanan, S., Smith, B., Venkatramani, L. et al. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Mol Biol 6, 56–63 (1999). https://doi.org/10.1038/4931

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing