Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes

Abstract

The crystal structure of a Ca2+-binding domain (dVI) of rat m-calpain has been determined at 2.3 Å resolution, both with and without bound Ca2+. The structures reveal a unique fold incorporating five EF-hand motifs per monomer, three of which bind calcium at physiological calcium concentrations, with one showing a novel EF-hand coordination pattern. This investigation gives us a first view of the calcium-induced conformational changes, and consequently an insight into the mechanism of calcium induced activation in calpain. The crystal structures reveal a dVI homodimer which provides a preliminary model for the subunit dimerization in calpain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Croall, D.E. & DeMartino, G.N. Calcium-activated neutral protease (Calpain) system: structure, function, and regulation. Physiol. Rev. 71, 813–847 (1991)

    Article  CAS  Google Scholar 

  2. Suzuki, K., Sorimachi, H., Yoshiza, T., Kinbara, K. & Ishiura, S. Calpain: novel family members, activation, and physiological function. Biol. Chem. Hoppe-Seyler 376, 523–529 (1995).

    Article  CAS  Google Scholar 

  3. Wang, K.K. & Yuen, P.W. Development and therapeutic potential of calpain inhibitors. Adv. Pharmacol. 37, 117–152 (1997).

    Article  CAS  Google Scholar 

  4. Berti, P.J. & Storer, A.C. Alignment/Phylogeny of the papain superfamily of cysteine proteases. J. Mol. Biol 246 273–283 (1995).

    Article  CAS  Google Scholar 

  5. Minami, Y., Emori, Y., Imajoh-Ohmi, S., Kawasaki, H. & Suzuki, K. Carboxyl- terminal truncation and site-directed mutagenesis of the EF-hand structure-domain of the small subunit of rabbit calcium-dependent protease. J. Biochem. 104, 927–933 (1987).

    Article  Google Scholar 

  6. Goll, D.E., Thompson, V.F., Taylor, R.G. & Zalewska, T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? BioEssays 14, 549–556 (1992).

    Article  CAS  Google Scholar 

  7. Zimmerman, U.-J. & Schlaepfer, W.W. Activation of calpain I and calpain II: a comparative study using terbium as a fluorescent probe for calcium-binding sites. Arch. Biochem. Biophys. 266, 462–469 (1988).

    Article  CAS  Google Scholar 

  8. Theopold, U., Pinter, M., Daffre, S., Tryselius, Y., Friedrich, P., Nässel, D.R. & Hultmark, D. CalpA, a Drosophila calpain homolog specifically expressed in a small set of nerve, midgut, and blood cells. Mol. Cell. Biol. 15, 824–4834 (1995).

    Article  CAS  Google Scholar 

  9. Kawasaki, H. & Kretsinger, R.H. Calcium-binding proteins 1: EF-hands. Protein Profile 2, 305–490 (1995)

    CAS  Google Scholar 

  10. Strynadka, N.C.J. & James, M.N.G. Crystal structures of the helix-loop-helix calcium-binding proteins. Ann. Rev. Biochem. 58, 951–998 (1989).

    Article  CAS  Google Scholar 

  11. Graham-Siegenthaler, K., Gauthier, S., Davies, P.L. & Elce, J.S. Active recombinant rat calpain II: bacterially produced large and small subunits associate both in vivo and in vitro. J. Biol. Chem. 269, 30457–30460 (1994).

    CAS  PubMed  Google Scholar 

  12. Sorimachi, H., Amano, S., Ishiura, S. & Suzuki, K. Primary sequences of rat calpain large and small subunits are, respectively, moderately and highly similar to those of human. Biochim. Biophys. Acta 1309, 37–41 (1996).

    Article  CAS  Google Scholar 

  13. Elce, J.S., Davies, P.L., Hegadorn, C., Maurice, D.H. & Arthur, J.S.C. The effects of truncations of the small subunit on m-calpain activity and heterodimer formation. Biochem. J. in the press.

  14. Blanchard, H., Li, Y., Cygler, M., Kay, C.M., Arthur, J.S.C., Davies, P.L. & Elce, J.S. Ca2+-Binding domain VI of rat calpain is a homodimer in solution: hydrodynamic, crystallization and preliminary X-ray diffraction studies. Prot. Sci. 5, 535–537 (1996).

    Article  CAS  Google Scholar 

  15. Schäfer, B.W. & Heizmann, C.W. The S100 family of EF-hand calcium-binding proteins: function and pathology. Trends Biochem. Sci. 21, 134–140 (1996).

    Article  Google Scholar 

  16. Rayment, I., Rypniewski, W.R., Schmidt-Bˇse, K., Smith, R., Tomchick, R.D., Benning, M.M., Winklemann, D.A., Wesenberg, G., Holden, H.M. Three-dimensional structure of Myosin Subfragment-1: A molecular motor. Science 261, 50–58 (1993).

    Article  Google Scholar 

  17. Hohenester, E., Maurer, P., Hohenadl, C., Timpl, R., Jansonius, J.N. & Engel, J. Structure of a novel extracellular Ca2+-binding module in BM-40. Nature Struct. Biol. 3, 67–73 (1996).

    Article  CAS  Google Scholar 

  18. Connolly, M.L., Analytical Molecular Surface Calculation. J. Appl. Crystallogr. 16, 548–558 (1983).

    Article  CAS  Google Scholar 

  19. Potts, B.C.M., Smith, J., Akke, M., Macke, T.J., Okazaki, K., Hidaka, H., Case, D.A. & Chazin, W.J. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins. Nature Struct. Biol. 2, 790–796 (1995).

    Article  CAS  Google Scholar 

  20. Kilby, P.M., Van Eldile, L.J. & Roberts, G.C. The solution structure of the bovine S100b protein dimer in the calcium-free state. Structure 4, 1041–1052 (1996).

    Article  CAS  Google Scholar 

  21. Van der Bliek, A.M., Meyers, M.B., Biedler, J.L., Hes, E. & Borst, P. A 22-kd protein (sorcin/V19) encoded by an amplified gene in multidrug-resistant cells, is homologous to the calcium-binding light chain of calpain. EMBO J. 5, 3201–3208 (1986).

    Article  CAS  Google Scholar 

  22. Boyhan, A., Casimir, C.M., French, J.K., Teahan, C.G. & Segal, A.W. Molecular cloning and characterization of grancalcin, a novel EF-hand calcium-binding protein abundant in neutrophils and monocytes, J. Biol. Chem. 267, 2928–2933 (1992).

    CAS  PubMed  Google Scholar 

  23. Chazin, W.J. Releasing the calcium trigger. Nature Struct. Biol. 2, 707–710 (1995).

    Article  CAS  Google Scholar 

  24. Ikura, M. Calcium-binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 21, 14–17 (1996).

    Article  CAS  Google Scholar 

  25. Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257 1251–1255 (1992).

    Article  CAS  Google Scholar 

  26. Graham-Siegenthaler, K. Calpain small subunit truncations: Ca2+ binding and reconstitution of enzyme activity (M. Sc. thesis, Queen's University; 1994).

    Google Scholar 

  27. Zhang, H. & Johnson, P. Conformational changes in calpain II and its isolated subunits induced by AlCl3. Biochem. Soc. Trans. 21, 444s (1993).

    Article  CAS  Google Scholar 

  28. Nishimura, T. & Goll, D.E. Binding of calpain fragments to calpastatin. J. Biol. Chem. 266, 11842–11850 (1991).

    CAS  PubMed  Google Scholar 

  29. Crawford, C., Brown, N.R. & Willis, A.C. Studies of the active site of m-calpain and the interaction with calpastatin. Biochem. J. 296, 135–142 (1993).

    Article  CAS  Google Scholar 

  30. Hendrickson, W.A., Norton, J.R. & LeMaster, D.M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9 1665–1672 (1990).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Data collection and processing (eds Sawyer., Isaacs, N., & Bailey, S.) 556–562 (SERC Daresbury Laboratory, Warrington; 1993).

    Google Scholar 

  32. Collaborative Computational Project Number 4. Acta Crystallogr. D50, 760–763 (1994)

  33. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta. Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  34. Brunger, A.T. X-PLOR Version 3.1 A system for Crystallography and NMR. Yale University Press, New Haven, CT, USA (1992)

    Google Scholar 

  35. Read, R. Improved fourier coefficients for maps using phases from partial structures with errors. J. Acta Crystallogr. A42, 140–149 (1986)

    Article  CAS  Google Scholar 

  36. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 26 283–291.

    Article  CAS  Google Scholar 

  37. Furey, W & Swaminathan, S. PHASES. Am. Cryst. Assoc. Annu. Mtg. Program. Abstr. 18, 73 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslaw Cygler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, H., Grochulski, P., Li, Y. et al. Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes. Nat Struct Mol Biol 4, 532–538 (1997). https://doi.org/10.1038/nsb0797-532

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0797-532

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing