Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway

Abstract

Expression of rRNA affects cell growth and proliferation, but mechanisms that modulate rRNA levels are poorly understood. We conducted a genetic screen for factors that negatively regulate generation of endogenous short interfering RNA (endo-siRNA) in Caenorhabditis elegans and identified a suppressor of siRNA (susi-1) and antisense ribosomal siRNAs (risiRNAs). risiRNAs show sequence complementary to 18S and 26S rRNAs and require RNA-dependent RNA polymerases (RdRPs) for their production. They act through the nuclear RNA interference (RNAi) pathway to downregulate pre-rRNA. Stress stimuli, including low temperature and UV irradiation, induced the accumulation of risiRNAs. SUSI-1 is a homolog of the human DIS3L2 exonuclease involved in 3′–5′ degradation of oligouridylated RNAs. In susi-1 mutant and in low temperature-treated animals, 3′-tail oligouridylated 26S rRNA accumulated. The injection of oligouridylated rRNA elicited nuclear accumulation of NRDE-3. Our findings identify a new subset of 22G-RNAs that regulate pre-rRNA expression and a mechanism to maintain rRNA homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Accumulation of risiRNA in the suppressor of siRNA susi-1 mutant.
Figure 2: risiRNA belongs to the 22G-RNA class.
Figure 3: Genetic requirements for risiRNA biogenesis.
Figure 4: risiRNAs downregulate expression of pre-rRNA via the Nrde pathway.
Figure 5: Lowering temperature increased expression of risiRNA.
Figure 6: SUSI-1(ceDIS3L2) suppresses risiRNA accumulation.
Figure 7: Oligouridylated 26S rRNA promotes risiRNA generation.
Figure 8: UV irradiation enhances risiRNA accumulation and triggers redistribution of NRDE-3 to the nucleus.
Figure 9: A working model for risiRNA- and NRDE-mediated pre-rRNA regulation.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Sequence Read Archive

References

  1. Czech, B. & Hannon, G.J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Siomi, H. & Siomi, M.C. On the road to reading the RNA-interference code. Nature 457, 396–404 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Tsai, H.Y. et al. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi. Cell 160, 407–419 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pak, J., Maniar, J.M., Mello, C.C. & Fire, A. Protection from feed-forward amplification in an amplified RNAi mechanism. Cell 151, 885–899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, C. & Ruvkun, G. New insights into siRNA amplification and RNAi. RNA Biol. 9, 1045–1049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Aoki, K., Moriguchi, H., Yoshioka, T., Okawa, K. & Tabara, H. In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. EMBO J. 26, 5007–5019 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sijen, T., Steiner, F.A., Thijssen, K.L. & Plasterk, R.H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315, 244–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Gu, W. et al. Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol. Cell 36, 231–244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fischer, S.E. et al. The ERI-6/7 helicase acts at the first stage of an siRNA amplification pathway that targets recent gene duplications. PLoS Genet. 7, e1002369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guang, S. et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science 321, 537–541 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shirayama, M., Stanney, W. III, Gu, W., Seth, M. & Mello, C.C. The Vasa Homolog RDE-12 engages target mRNA and multiple argonaute proteins to promote RNAi in C. elegans. Curr. Biol. 24, 845–851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, H. et al. The DEAD box helicase RDE-12 promotes amplification of RNAi in cytoplasmic foci in C. elegans. Curr. Biol. 24, 832–838 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gu, W., Claycomb, J.M., Batista, P.J., Mello, C.C. & Conte, D. Cloning Argonaute-associated small RNAs from Caenorhabditis elegans. Methods Mol. Biol. 725, 251–280 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, X. et al. Nuclear RNAi contributes to the silencing of off-target genes and repetitive sequences in Caenorhabditis elegans. Genetics 197, 121–132 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Claycomb, J.M. et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123–134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buckley, B.A. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447–451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Batista, P.J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67–78 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gabel, H.W. & Ruvkun, G. The exonuclease ERI-1 has a conserved dual role in 5.8S rRNA processing and RNAi. Nat. Struct. Mol. Biol. 15, 531–533 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ni, J.Z. et al. A transgenerational role of the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. elegans. Epigenetics Chromatin 9, 3 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Weick, E.M. et al. PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes Dev. 28, 783–796 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ashe, A. et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yi, Y.H. et al. A Genetic Cascade of let-7-ncl-1-fib-1 Modulates Nucleolar Size and rRNA Pool in Caenorhabditis elegans. PLoS Genet. 11, e1005580 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lee, L.W., Lee, C.C., Huang, C.R. & Lo, S.J. The nucleolus of Caenorhabditis elegans. J. Biomed. Biotechnol. 2012, 601274 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Thompson, O. et al. The million mutation project: a new approach to genetics in Caenorhabditis elegans. Genome Res. 23, 1749–1762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, X. et al. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Sci. Rep. 4, 7581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat. Genet. 44, 277–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Morris, M.R., Astuti, D. & Maher, E.R. Perlman Syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. Am. J. Med. Genet. C. Semin. Med. Genet. 163C, 106–113 (2013).

    Article  PubMed  CAS  Google Scholar 

  33. Chang, H.M., Triboulet, R., Thornton, J.E. & Gregory, R.I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497, 244–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faehnle, C.R., Walleshauser, J. & Joshua-Tor, L. Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature 514, 252–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lubas, M. et al. Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA. EMBO J. 32, 1855–1868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malecki, M. et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J. 32, 1842–1854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bühler, M., Spies, N., Bartel, D.P. & Moazed, D. TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat. Struct. Mol. Biol. 15, 1015–1023 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lee, H.C. et al. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 459, 274–277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao, M. et al. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 111, 14613–14618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Q., Shalaby, N.A. & Buszczak, M. Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage. Science 343, 298–301 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hokii, Y. et al. A small nucleolar RNA functions in rRNA processing in Caenorhabditis elegans. Nucleic Acids Res. 38, 5909–5918 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feng, X. & Guang, S. Small RNAs, RNAi and the inheritance of gene silencing in Caenorhabditis elegans. J. Genet. Genomics 40, 153–160 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Guang, S. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465, 1097–1101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mao, H. et al. The Nrde pathway mediates small-RNA-directed histone H3 lysine 27 trimethylation in Caenorhabditis elegans. Curr. Biol. 25, 2398–2403 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Lim, J. et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365–1376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Slevin, M.K. et al. Deep sequencing shows multiple oligouridylations are required for 3′ to 5′ degradation of histone mRNAs on polyribosomes. Mol. Cell 53, 1020–1030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Łabno, A. et al. Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Res. 44, 10437–10453 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Dammel, C.S. & Noller, H.F. A cold-sensitive mutation in 16S rRNA provides evidence for helical switching in ribosome assembly. Genes Dev. 7, 660–670 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Girard, J.P., Feliu, J., Caizergues-Ferrer, M. & Lapeyre, B. Study of multiple fibrillarin mRNAs reveals that 3′ end formation in Schizosaccharomyces pombe is sensitive to cold shock. Nucleic Acids Res. 21, 1881–1887 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spithill, T.W., English, K.J., Nagley, P. & Linnane, A.W. Altered mitochondrial ribosomes in a cold-sensitive mutant of Saccharomyces cerevisiae. Mol. Biol. Rep. 4, 83–86 (1978).

    Article  CAS  PubMed  Google Scholar 

  51. Stevens, R.H. & Amos, H. RNA metabolism in HeLa cells at reduced temperature. I. Modified processing of 45S RNA. J. Cell Biol. 50, 818–829 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tashiro, K., Misumi, Y., Shiokawa, K. & Yamana, K. Determination of the rate of rRNA synthesis in Xenopus laevis triploid embryos produced by low-temperature treatment. J. Exp. Zool. 225, 489–495 (1983).

    Article  CAS  PubMed  Google Scholar 

  53. Xia, B., Ke, H., Shinde, U. & Inouye, M. The role of RbfA in 16S rRNA processing and cell growth at low temperature in Escherichia coli. J. Mol. Biol. 332, 575–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Duchaine, T.F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thorvaldsdóttir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  PubMed  CAS  Google Scholar 

  58. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Kenney, X. Fu, B. Buckley, X. Liu, B. Dong, C. Liu and members of S.G.'s lab for their comments. We are grateful to the Caenorhabditis Genetics Center (CGC), the International C. elegans Gene Knockout Consortium and the National Bioresource Project for providing the strains. A. Fire (Stanford University) provided HT115 bacteria expressing the empty vector L4440. This work was supported by grants from the National Natural Science Foundation of China (31371323, 31671346, 91640110 and 81501329), the Fundamental Research Funds for Central Universities (WK2060190018 and WK2070000034) and KJZD-EW-L01-2 to S.G.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. constructed the transgenes and generated Figures 3,4,5,6,7, Supplementary Figures 3, 4 and 6 and Supplementary Tables 1 and 3. X.F. conducted the genetic screening, identified risiRNA, mapped susi-1 and contributed to Figures 1, 2 and 8, Supplementary Figures 2, 5, 7 and 8 and Supplementary Table 2. H.M. contributed to Figure 8 and Supplementary Figure 8. M.L., F.X. and K.H. contributed to Figure 3b,e. X.Z., X.F. and S.G. designed the project and wrote the manuscript.

Corresponding author

Correspondence to Shouhong Guang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Antisense ribosomal siRNAs were enriched in susi-1 mutant.

(A) Deep sequencing of small RNAs in wild-type N2 and susi-1(R457H) mutant animals. The relative abundance of rRNA-related sequences is indicated. (B) Size distribution and 5'-end nucleotide preference of sense rRNA reads in wild-type N2 and susi-1(R457H) animals. (C) Pie charts display the proportion of reads aligning to each genomic feature. The reads corresponding to sense rRNA sequences were excluded from the analysis. (D) Relative abundance of endogenous smalls from wild-type N2 and susi-1(R457H) animals. Source data (for panels B-C) are available on-line.

Source data

Supplementary Figure 2 risiRNA belongs to 22G-RNAs.

(A) Relative abundance of Argonaute-associated risiRNAs from published data sets. (B) risiRNA was pre-treated with or without calf intestinal alkaline phosphatase (CIAP), followed by p32 labeling. Uncropped gel image is shown in Supplementary Data Set 2. (C) risiRNA was pre-treated with guanylyl transferase followed by p32 labeling. Uncropped gel image is shown in Supplementary Data Set 2. (D) risiRNA was pre-labeled with p32 followed by β-elimination reactions. Uncropped gel image is shown in Supplementary Data Set 2. (E) Relative abundance of Argonaute-associated small RNAs from published data sets. The blue dashed lines represent risiRNA. Source data (for panels A, E) are available on-line.

Source data

Supplementary Figure 3 risiRNA silences pre-rRNA through the nuclear RNAi pathway.

(A) Images of C. elegans' embryos expressing risiRNA sensor after feeding exogenous dsRNA targeting gfp and 26S rRNA. (B) Brood size of indicated animals at 20°C. (C) NRDE-3-associated RNAs in the indicated animals were immunoprecipitated and quantified by qRT-PCR. Ratios are presented as +/- exogenous dsRNA. mean ± s.d. n=3 independent animals. Source data (for panels B-C) are available on-line.

Source data

Supplementary Figure 4 Low temperature upregulates risiRNA expression.

(A) Brood size of the indicated animals at different temperatures. (B, C) Total RNA samples were collected from bleached embryos of the indicated genotypes. The abundance of risiRNA was quantified by Taqman qRT-PCR and is shown relative to levels of wild-type animals at 20°C. mean ± s.d. n=3 independent animals. *p<0.05, **p<0.01, ***p<0.001, NS, not significant. two-tailed student t-test. (D) Images of representative seam cells of the indicated animals expressing GFP::NRDE-3. The percentage of nuclear localized NRDE-3 is quantified at the right panel. Source data (for panels A-D) are available on-line.

Source data

Supplementary Figure 5 Lowering temperature triggers risiRNA generation.

(A) Relative abundance of small RNAs in wild-type N2 animals at different temperatures. The blue dashed lines represent risiRNA. (B) Relative abundance of NRDE-3-associated small RNAs at different temperatures. NRDE-3-associated small RNAs at 20°C have been deep sequenced previously. The blue dashed lines represent risiRNA. (C) Relative abundance of NRDE-3-associated small RNAs at different temperatures in eri-1(mg366);gfp::nrde-3 animals. The small RNA deep sequencing data of NRDE-3 immunoprecipitation in eri-1(mg366);dpy-13(e458);dpy-13(RNAi); gfp::nrde-3 animals were re-analyzed here. The blue dashed lines represent risiRNA. Source data (for panels A-C) are available on-line.

Source data

Supplementary Figure 6 SUSI-1 localized to the cytoplasm and was required for fertility.

(A) Images of representative seam cells of indicated animals. susi-1p::mCherry::SUSI-1 rescued the nuclear localization of NRDE-3. (B) Images of representative seam cells of indicated animals expressing GFP::SUSI-1 and its variants. (C) Synergistic fertility defects in eri-1(mg366);susi-1 double mutants. (D) Synergistic embryonic lethality in eri-1(mg366);susi-1 double mutants. The number of counted embryos are shown above each column. Source data (for panels C-D) are available on-line.

Source data

Supplementary Figure 7 TAIL-seq analysis identified nontemplated addition of single nucleotide at the 3' ends of 26S rRNA.

(A, B) Tail-seq of 26S rRNA and the comparison of 3'-end untemplated addition of single nucleotide. Total RNA of indicated animals were isolated from bleached embryos and subjected to Tail-seq assay. The sense 26S rRNA reads were compared to annotated 26S rRNA sequences of WS250 transcriptome assembly. Source data (for panels A-B) are available on-line.

Source data

Supplementary Figure 8 UV irradiation elicits the translocation of NRDE-3 to the nucleus and stimulates risiRNA generation.

(A) Bleached embryos of eri-1(mg366);gfp::nrde-3 animals were exposed to 50 mJ/cm2 UV and the percentage of nuclear localized NRDE-3 was scored at indicated times post irradiation. (B) Bleached embryos of eri-1(mg366);gfp::nrde-3;mCherry::fib-1 animals were exposed to 50 mJ/cm2 UV irradiation and the subcellular localization of GFP::NRDE-3 and mCherry::FIB-1 were visualized. white arrows, nucleoli; red triangle, nucleus. (C) NRDE-3-associated small RNAs were immunoprecipitated and risiRNAs were quantified by Taqman qRT-PCR. mean ± s.d. n=3 independent animals. 18S and 26S, risiRNA sequences; 21UR-1 and 21UR-5045, piRNA sequences; e01g4.5 #1 and #2, endo-siRNA sequences. Source data (for panels C-D) are available on-line. (D) Total RNAs were isolated from bleached embryos after UV irradiation and the abundance of risiRNAs was quantified by qRT-PCR. mean ± s.d. n=3 independent animals.

Source data

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–5 (PDF 1879 kb)

Supplementary Data Set 1

NRDE-3 reassociates with siRNAs in susi-1 mutant. (PDF 1120 kb)

Supplementary Data Set 2

NRDE-3 reassociates with siRNAs after 50 mJ/cm2 UV irradiation. (PDF 1980 kb)

Supplementary Data Set 3

Biochemical analysis of risiRNA. (PDF 1135 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Feng, X., Mao, H. et al. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nat Struct Mol Biol 24, 258–269 (2017). https://doi.org/10.1038/nsmb.3376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing