Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Atomic-level analysis of membrane-protein structure

Wayne Hendrickson discusses the consortium efforts and developments in methodology that in recent years have allowed unprecedented advances in atomic-structure determination of membrane proteins.

Abstract

Membrane proteins are substantially more challenging than natively soluble proteins as subjects for structural analysis. Thus, membrane proteins are greatly underrepresented in structural databases. Recently, focused consortium efforts and advances in methodology for protein production, crystallographic analysis and cryo-EM analysis have accelerated the pace of atomic-level structure determination of membrane proteins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth in membrane-protein structures.
Figure 2: Latticework in an LCP crystal of a membrane protein.
Figure 3: Density distributions for transmembrane helices obtained by different methods.

References

  1. Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  Google Scholar 

  2. Henderson, R. & Unwin, P.N. Nature 257, 28–32 (1975).

    Article  CAS  Google Scholar 

  3. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. Nature 318, 618–624 (1985).

    Article  CAS  Google Scholar 

  4. Doyle, D.A. et al. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  5. Rasmussen, S.G. et al. Nature 477, 549–555 (2011).

    Article  CAS  Google Scholar 

  6. White, S.H. Nature 459, 344–346 (2009).

    Article  CAS  Google Scholar 

  7. Wallin, E. & von Heijne, G. Protein Sci. 7, 1029–1038 (1998).

    Article  CAS  Google Scholar 

  8. Levitt, M. Proc. Natl. Acad. Sci. USA 104, 3183–3188 (2007).

    Article  CAS  Google Scholar 

  9. Bruni, R. & Kloss, B. Curr. Protoc. Protein Sci. 74, 29.6 (2013).

    Google Scholar 

  10. Goehring, A. et al. Nat. Protoc. 9, 2574–2585 (2014).

    Article  CAS  Google Scholar 

  11. Kawate, T. & Gouaux, E. Structure 14, 673–681 (2006).

    Article  CAS  Google Scholar 

  12. Chae, P.S. et al. Nat. Methods 7, 1003–1008 (2010).

    Article  CAS  Google Scholar 

  13. Popot, J.L. et al. Annu. Rev. Biophys. 40, 379–408 (2011).

    Article  CAS  Google Scholar 

  14. Love, J. et al. J. Struct. Funct. Genomics 11, 191–199 (2010).

    Article  CAS  Google Scholar 

  15. Stevens, R.C. et al. Nat. Rev. Drug Discov. 12, 25–34 (2013).

    Article  CAS  Google Scholar 

  16. Thorsen, T.S., Matt, R., Weis, W.I. & Kobilka, B.K. Structure 22, 1657–1664 (2014).

    Article  CAS  Google Scholar 

  17. Caffrey, M. Acta Crystallogr. F Struct. Biol. Commun. 71, 3–18 (2015).

    Article  CAS  Google Scholar 

  18. Smith, J.L., Fischetti, R.F. & Yamamoto, M. Curr. Opin. Struct. Biol. 22, 602–612 (2012).

    Article  CAS  Google Scholar 

  19. Weierstall, U. et al. Nat. Commun. 5, 3309 (2014).

    Article  Google Scholar 

  20. Liu, Q. et al. Science 336, 1033–1037 (2012).

    Article  CAS  Google Scholar 

  21. Weinert, T. et al. Nat. Methods 12, 131–133 (2015).

    Article  CAS  Google Scholar 

  22. Liu, Q. & Hendrickson, W.A. Curr. Opin. Struct. Biol. 34, 99–107 (2015).

    Article  Google Scholar 

  23. Cheng, Y., Grigorieff, N., Penczek, P.A. & Walz, T. Cell 161, 438–449 (2015).

    Article  CAS  Google Scholar 

  24. Bai, X.C., McMullan, G. & Scheres, S.H. Trends Biochem. Sci. 40, 49–57 (2015).

    Article  CAS  Google Scholar 

  25. Liao, M., Cao, E., Julius, D. & Cheng, Y. Nature 504, 107–112 (2013).

    Article  CAS  Google Scholar 

  26. Zalk, R. et al. Nature 517, 44–49 (2015).

    Article  CAS  Google Scholar 

  27. Yan, Z. et al. Nature 517, 50–55 (2015).

    Article  CAS  Google Scholar 

  28. Bai, X.C. et al. Nature 525, 212–217 (2015).

    Article  CAS  Google Scholar 

  29. Hite, R.K. et al. Nature 527, 198–203 (2015).

    Article  CAS  Google Scholar 

  30. Guo, Y. et al. Science 347, 551–555 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Y. Guo for producing Figure 2 and Y. Shi for providing a high-resolution image for Figure 3b. I thank F. Mancia, Q. Liu, L. Shapiro, B. Kloss, R. Bruni, R. Kalathur and others from the NYCOMPS team for numerous contributions to the experience reported here. This work was supported in part by NIH grants GM095315 and GM107462.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne A Hendrickson.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendrickson, W. Atomic-level analysis of membrane-protein structure. Nat Struct Mol Biol 23, 464–467 (2016). https://doi.org/10.1038/nsmb.3215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing