Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Replication stress: getting back on track

Subjects

Abstract

The replication-stress response enables the DNA replication machinery to overcome DNA lesions or intrinsic replication-fork obstacles, and it is essential to ensure faithful transmission of genetic information to daughter cells. Multiple replication stress–response pathways have been identified in recent years, thus raising questions about the specific and possibly redundant functions of these pathways. Here, we review the emerging mechanisms of the replication-stress response in mammalian cells and consider how they may influence the dynamics of the core DNA replication complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of replication-fork processing and restart.
Figure 2: Mechanisms of reversed replication-fork processing and restart.
Figure 3: Replisome dynamics and ICL bypass.

Similar content being viewed by others

References

  1. Zeman, M.K. & Cimprich, K.A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ge, X.Q., Jackson, D.A. & Blow, J.J. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331–3341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tercero, J.A. & Diffley, J.F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. De Piccoli, G. et al. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol. Cell 45, 696–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Yao, N.Y. & O'Donnell, M. Replisome structure and conformational dynamics underlie fork progression past obstacles. Curr. Opin. Cell Biol. 21, 336–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ilves, I., Petojevic, T., Pesavento, J.J. & Botchan, M.R. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 37, 247–258 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Byun, T.S., Pacek, M., Yee, M.C., Walter, J.C. & Cimprich, K.A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lopes, M., Foiani, M. & Sogo, J.M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Pagès, V. & Fuchs, R.P. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 300, 1300–1303 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. Zellweger, R. et al. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J. Cell Biol. 208, 563–579 (2015).This paper shows that replication-fork reversal is a general response to a wide range of genotoxic treatments in human cells and that Rad51 is required for this process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luke-Glaser, S., Luke, B., Grossi, S. & Constantinou, A. FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J. 29, 795–805 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Patro, B.S., Frøhlich, R., Bohr, V.A. & Stevnsner, T. WRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes. J. Cell Sci. 124, 3967–3979 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nam, E.A. & Cortez, D. ATR signalling: more than meeting at the fork. Biochem. J. 436, 527–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Labib, K. & De Piccoli, G. Surviving chromosome replication: the many roles of the S-phase checkpoint pathway. Phil. Trans. R. Soc. Lond. B 366, 3554–3561 (2011).

    Article  CAS  Google Scholar 

  16. Couch, F.B. et al. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 27, 1610–1623 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lossaint, G. et al. FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling. Mol. Cell 51, 678–690 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Ge, X.Q. & Blow, J.J. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J. Cell Biol. 191, 1285–1297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karnani, N. & Dutta, A. The effect of the intra-S-phase checkpoint on origins of replication in human cells. Genes Dev. 25, 621–633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Toledo, L.I. et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088–1103 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, Y.H. et al. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol. Cell 58, 323–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yeeles, J.T., Poli, J., Marians, K.J. & Pasero, P. Rescuing stalled or damaged replication forks. Cold Spring Harb. Perspect. Biol. 5, a012815 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sale, J.E., Lehmann, A.R. & Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol. 13, 141–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heller, R.C. & Marians, K.J. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439, 557–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Yeeles, J.T. & Marians, K.J. The Escherichia coli replisome is inherently DNA damage tolerant. Science 334, 235–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elvers, I., Johansson, F., Groth, P., Erixon, K. & Helleday, T. UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Res. 39, 7049–7057 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mourón, S. et al. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat. Struct. Mol. Biol. 20, 1383–1389 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Bianchi, J. et al. PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol. Cell 52, 566–573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. García-Gómez, S. et al. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell 52, 541–553 (2013).Refs. 27–29 show that PrimPol uses its primase activity to bypass UV photoproducts.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ghosal, G. & Chen, J. DNA damage tolerance: a double-edged sword guarding the genome. Transl. Cancer Res. 2, 107–129 (2013).

    CAS  PubMed  Google Scholar 

  31. Karras, G.I. & Jentsch, S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141, 255–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Daigaku, Y., Davies, A.A. & Ulrich, H.D. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465, 951–955 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mailand, N., Gibbs-Seymour, I. & Bekker-Jensen, S. Regulation of PCNA-protein interactions for genome stability. Nat. Rev. Mol. Cell Biol. 14, 269–282 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Chan, K.L., North, P.S. & Hickson, I.D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 26, 3397–3409 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harrigan, J.A. et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J. Cell Biol. 193, 97–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Atkinson, J. & McGlynn, P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res. 37, 3475–3492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berti, M. et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol. 20, 347–354 (2013).This paper defines the mechanism by which RECQ1 and PAPR1 regulate fork reversal and restart.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neelsen, K.J. & Lopes, M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat. Rev. Mol. Cell Biol. 16, 207–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Ray Chaudhuri, A. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19, 417–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Higgins, N.P., Kato, K. & Strauss, B. A model for replication repair in mammalian cells. J. Mol. Biol. 101, 417–425 (1976).

    Article  CAS  PubMed  Google Scholar 

  41. Sogo, J.M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Bugreev, D.V., Rossi, M.J. & Mazin, A.V. Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res. 39, 2153–2164 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Bétous, R. et al. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 26, 151–162 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gari, K., Décaillet, C., Delannoy, M., Wu, L. & Constantinou, A. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl. Acad. Sci. USA 105, 16107–16112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuan, J., Ghosal, G. & Chen, J. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol. Cell 47, 410–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ciccia, A. et al. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol. Cell 47, 396–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blastyák, A. et al. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell 28, 167–175 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Blastyák, A., Hajdú, I., Unk, I. & Haracska, L. Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol. Cell. Biol. 30, 684–693 (2010).

    Article  PubMed  CAS  Google Scholar 

  49. Kile, A.C. et al. HLTF's Ancient HIRAN domain binds 3′ DNA ends to drive replication fork reversal. Mol. Cell 58, 1090–1100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fugger, K. et al. FBH1 catalyzes regression of stalled replication forks. Cell Reports 10, 1749–1757 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Machwe, A., Xiao, L., Groden, J. & Orren, D.K. The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry 45, 13939–13946 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Petermann, E., Orta, M.L., Issaeva, N., Schultz, N. & Helleday, T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492–502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012).Refs. 53 and 54 provide the first demonstration of a DSB-independent role of HDR and FA factors in protecting stalled replication forks from MRE11-dependent degradation, thus extending knowledge of the causes of the high genomic instability associated with mutations in these HDR and FA genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thangavel, S. et al. DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208, 545–562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu, J. et al. The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. Cell 149, 1221–1232 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Bétous, R. et al. Substrate-selective repair and restart of replication forks by DNA translocases. Cell Reports 3, 1958–1969 (2013).

    Article  PubMed  CAS  Google Scholar 

  58. Bizard, A.H. & Hickson, I.D. The dissolution of double Holliday junctions. Cold Spring Harb. Perspect. Biol. 6, a016477 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fumasoni, M., Zwicky, K., Vanoli, F., Lopes, M. & Branzei, D. Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/Primase/Ctf4 complex. Mol. Cell 57, 812–823 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Motegi, A. et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc. Natl. Acad. Sci. USA 105, 12411–12416 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Unk, I. et al. Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc. Natl. Acad. Sci. USA 103, 18107–18112 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, J.R., Zeman, M.K., Chen, J.Y., Yee, M.C. & Cimprich, K.A. SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol. Cell 42, 237–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, X., Bosques, L., Sung, P. & Kupfer, G.M. A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage. Oncogene doi:10.1038/onc.2015.68 (20 April 2015).

    Article  CAS  PubMed  Google Scholar 

  64. Indiani, C., Patel, M., Goodman, M.F. & O'Donnell, M.E. RecA acts as a switch to regulate polymerase occupancy in a moving replication fork. Proc. Natl. Acad. Sci. USA 110, 5410–5415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ying, S., Hamdy, F.C. & Helleday, T. Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res. 72, 2814–2821 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Chaudhury, I., Stroik, D.R. & Sobeck, A. FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks. Mol. Cell. Biol. 34, 3939–3954 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hashimoto, Y., Ray Chaudhuri, A., Lopes, M. & Costanzo, V. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol. 17, 1305–1311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Su, F. et al. Nonenzymatic role for WRN in preserving nascent DNA strands after replication stress. Cell Reports 9, 1387–1401 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Costanzo, V. et al. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol. Cell 8, 137–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Costanzo, V. Brca2, Rad51 and Mre11: performing balancing acts on replication forks. DNA Repair (Amst.) 10, 1060–1065 (2011).

    Article  CAS  Google Scholar 

  71. Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Yeo, J.E., Lee, E.H., Hendrickson, E.A. & Sobeck, A. CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum. Mol. Genet. 23, 3695–3705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Malkova, A. & Ira, G. Break-induced replication: functions and molecular mechanism. Curr. Opin. Genet. Dev. 23, 271–279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Donnianni, R.A. & Symington, L.S. Break-induced replication occurs by conservative DNA synthesis. Proc. Natl. Acad. Sci. USA 110, 13475–13480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Saini, N. et al. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502, 389–392 (2013).Refs. 74 and 75 provide new insight into the mechanism by which break-induced replication drives conservative DNA synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wilson, M.A. et al. Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration. Nature 502, 393–396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Costantino, L. et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343, 88–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Smith, C.E., Llorente, B. & Symington, L.S. Template switching during break-induced replication. Nature 447, 102–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Anand, R.P. et al. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev. 28, 2394–2406 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Deem, A. et al. Break-induced replication is highly inaccurate. PLoS Biol. 9, e1000594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hanada, K. et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat. Struct. Mol. Biol. 14, 1096–1104 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Neelsen, K.J., Zanini, I.M., Herrador, R. & Lopes, M. Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J. Cell Biol. 200, 699–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Matos, J. & West, S.C. Holliday junction resolution: regulation in space and time. DNA Repair (Amst.) 19, 176–181 (2014).

    Article  CAS  Google Scholar 

  84. Ying, S. et al. MUS81 promotes common fragile site expression. Nat. Cell Biol. 15, 1001–1007 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Fu, H. et al. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage. Nat. Commun. 6, 6746 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Pepe, A. & West, S.C. Substrate specificity of the MUS81-EME2 structure selective endonuclease. Nucleic Acids Res. 42, 3833–3845 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Tognetti, S., Riera, A. & Speck, C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 124, 13–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Botchan, M. & Berger, J. DNA replication: making two forks from one prereplication complex. Mol. Cell 40, 860–861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Remus, D. et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yeeles, J.T., Deegan, T.D., Janska, A., Early, A. & Diffley, J.F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431–435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Costa, A. et al. The structural basis for MCM2–7 helicase activation by GINS and Cdc45. Nat. Struct. Mol. Biol. 18, 471–477 (2011).This study reports important structural information on the architecture of the CMG complex and provides a groundwork for future studies on the conformational changes of CMG during both normal and perturbed replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Petojevic, T. et al. Cdc45 (cell division cycle protein 45) guards the gate of the eukaryote replisome helicase stabilizing leading strand engagement. Proc. Natl. Acad. Sci. USA 112, E249–E258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fu, Y.V. et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146, 931–941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bruck, I. & Kaplan, D.L. Cdc45 protein-single-stranded DNA interaction is important for stalling the helicase during replication stress. J. Biol. Chem. 288, 7550–7563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hashimoto, Y., Puddu, F. & Costanzo, V. RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat. Struct. Mol. Biol. 19, 17–24 (2012).

    Article  CAS  Google Scholar 

  96. Huang, J. et al. The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. Mol. Cell 52, 434–446 (2013).This paper shows that the moving replisome traverses ICLs in a FANCM-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  97. Cobb, J.A., Bjergbaek, L., Shimada, K., Frei, C. & Gasser, S.M. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 22, 4325–4336 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lucca, C. et al. Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23, 1206–1213 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Ilves, I., Tamberg, N. & Botchan, M.R. Checkpoint kinase 2 (Chk2) inhibits the activity of the Cdc45/MCM2-7/GINS (CMG) replicative helicase complex. Proc. Natl. Acad. Sci. USA 109, 13163–13170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Manosas, M., Perumal, S.K., Croquette, V. & Benkovic, S.J. Direct observation of stalled fork restart via fork regression in the T4 replication system. Science 338, 1217–1220 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Ayala, A. Costa, J. Eissenberg, M. Lopes, P. Pasero and M. Seidman for their careful reading of the manuscript and insightful comments. Work in the laboratory of A.V. is supported by US National Institutes of Health grant R01GM108648.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Vindigni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berti, M., Vindigni, A. Replication stress: getting back on track. Nat Struct Mol Biol 23, 103–109 (2016). https://doi.org/10.1038/nsmb.3163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing