Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Skywalker-TBC1D24 has a lipid-binding pocket mutated in epilepsy and required for synaptic function

Abstract

Mutations in TBC1D24 cause severe epilepsy and DOORS syndrome, but the molecular mechanisms underlying these pathologies are unresolved. We solved the crystal structure of the TBC domain of the Drosophila ortholog Skywalker, revealing an unanticipated cationic pocket conserved among TBC1D24 homologs. Cocrystallization and biochemistry showed that this pocket binds phosphoinositides phosphorylated at the 4 and 5 positions. The most prevalent patient mutations affect the phosphoinositide-binding pocket and inhibit lipid binding. Using in vivo photobleaching of Skywalker-GFP mutants, including pathogenic mutants, we showed that membrane binding via this pocket restricts Skywalker diffusion in presynaptic terminals. Additionally, the pathogenic mutations cause severe neurological defects in flies, including impaired synaptic-vesicle trafficking and seizures, and these defects are reversed by genetically increasing synaptic PI(4,5)P2 concentrations through synaptojanin mutations. Hence, we discovered that a TBC domain affected by clinical mutations directly binds phosphoinositides through a cationic pocket and that phosphoinositide binding is critical for presynaptic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the unconventional TBC domain of Sky (Sky1–353).
Figure 2: Disease-associated mutations in TBC1D24-Sky.
Figure 3: The cationic pocket of the TBC domain of Sky binds phosphoinositides.
Figure 4: Mutations in the cationic pocket increase Sky protein diffusion in synaptic terminals.
Figure 5: The cationic pocket in Sky is required for presynaptic function.
Figure 6: Mutation of the cationic pocket of Sky induces susceptibility to seizures, loss of coordination and hyperactivity in adult flies.
Figure 7: Partial loss of synj rescues Sky with cationic-pocket mutations.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Corbett, M.A. et al. A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24. Am. J. Hum. Genet. 87, 371–375 (2010).

    Article  CAS  Google Scholar 

  2. Falace, A. et al. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am. J. Hum. Genet. 87, 365–370 (2010).

    Article  CAS  Google Scholar 

  3. Guven, A. & Tolun, A. TBC1D24 truncating mutation resulting in severe neurodegeneration. J. Med. Genet. 50, 199–202 (2013).

    Article  CAS  Google Scholar 

  4. Milh, M. et al. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum. Mutat. 34, 869–872 (2013).

    Article  CAS  Google Scholar 

  5. Muona, M. et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat. Genet. 47, 39–46 (2015).

    Article  CAS  Google Scholar 

  6. Poulat, A.-L. et al. Homozygous TBC1D24 mutation in two siblings with familial infantile myoclonic epilepsy (FIME) and moderate intellectual disability. Epilepsy Res. 111, 72–77 (2015).

    Article  CAS  Google Scholar 

  7. Azaiez, H. et al. TBC1D24 mutation causes autosomal-dominant nonsyndromic hearing loss. Hum. Mutat. 35, 819–823 (2014).

    Article  CAS  Google Scholar 

  8. Bakhchane, A. et al. Recessive TBC1D24 mutations are frequent in Moroccan non-syndromic hearing loss pedigrees. PLoS One 10, e0138072 (2015).

    Article  Google Scholar 

  9. Stražišar, B.G., Neubauer, D., Paro Panjan, D. & Writzl, K. Early-onset epileptic encephalopathy with hearing loss in two siblings with TBC1D24 recessive mutations. Eur. J. Paediatr. Neurol. 19, 251–256 (2015).

    Article  Google Scholar 

  10. Zhang, L., Hu, L., Chai, Y. & Pang, X. A dominant mutation in the stereocilia-expressing gene TBC1D24 is a probable cause for non-syndromic hearing impairment. Hum. Mutat. 35, 814–818 (2014).

    Article  CAS  Google Scholar 

  11. Doummar, D. et al. A novel homozygous TBC1D24 mutation causing multifocal myoclonus with cerebellar involvement. Mov. Disord. 30, 1431–1432 (2015).

    Article  CAS  Google Scholar 

  12. Campeau, P.M. & Hennekam, R.C. DOORS syndrome: phenotype, genotype and comparison with Coffin-Siris syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 166C, 327–332 (2014).

    Article  Google Scholar 

  13. Campeau, P.M. et al. The genetic basis of DOORS syndrome: an exome-sequencing study. Lancet Neurol. 13, 44–58 (2014).

    Article  CAS  Google Scholar 

  14. Mucha, B.E., Hennekam, R.C., Sisodiya, S. & Campeau, P.M. TBC1D24-related disorders. in GeneReviews (eds. Pagon, R.A. et al.) (University of Washington, Seattle, 2015).

  15. Frasa, M.A., Koessmeier, K.T., Ahmadian, M.R. & Braga, V.M. Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat. Rev. Mol. Cell Biol. 13, 67–73 (2012).

    Article  CAS  Google Scholar 

  16. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513–525 (2009).

    Article  CAS  Google Scholar 

  17. Fukuda, M. TBC proteins: GAPs for mammalian small GTPase Rab? Biosci. Rep. 31, 159–168 (2011).

    Article  CAS  Google Scholar 

  18. Gavriljuk, K. et al. Catalytic mechanism of a mammalian Rab·RabGAP complex in atomic detail. Proc. Natl. Acad. Sci. USA 109, 21348–21353 (2012).

    Article  CAS  Google Scholar 

  19. Pan, X., Eathiraj, S., Munson, M. & Lambright, D.G. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442, 303–306 (2006).

    Article  CAS  Google Scholar 

  20. Uytterhoeven, V., Kuenen, S., Kasprowicz, J., Miskiewicz, K. & Verstreken, P. Loss of skywalker reveals synaptic endosomes as sorting stations for synaptic vesicle proteins. Cell 145, 117–132 (2011).

    Article  CAS  Google Scholar 

  21. Chaineau, M., Ioannou, M.S. & McPherson, P.S. Rab35: GEFs, GAPs and effectors. Traffic 14, 1109–1117 (2013).

    CAS  PubMed  Google Scholar 

  22. Cherfils, J. Arf GTPases and their effectors: assembling multivalent membrane-binding platforms. Curr. Opin. Struct. Biol. 29, 67–76 (2014).

    Article  CAS  Google Scholar 

  23. Chesneau, L. et al. An ARF6/Rab35 GTPase cascade for endocytic recycling and successful cytokinesis. Curr. Biol. 22, 147–153 (2012).

    Article  CAS  Google Scholar 

  24. Fernandes, A.C. et al. Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration. J. Cell Biol. 207, 453–462 (2014).

    Article  CAS  Google Scholar 

  25. Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    Article  CAS  Google Scholar 

  26. Verstreken, P. et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733–748 (2003).

    Article  CAS  Google Scholar 

  27. Park, S.-Y., Jin, W., Woo, J.R. & Shoelson, S.E. Crystal structures of human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating protein (RabGAP) domains reveal critical elements for GLUT4 translocation. J. Biol. Chem. 286, 18130–18138 (2011).

    Article  CAS  Google Scholar 

  28. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010).

    Article  CAS  Google Scholar 

  29. Rehman, A.U. et al. Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86. Am. J. Hum. Genet. 94, 144–152 (2014).

    Article  CAS  Google Scholar 

  30. Falace, A. et al. TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway. Proc. Natl. Acad. Sci. USA 111, 2337–2342 (2014).

    Article  CAS  Google Scholar 

  31. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  Google Scholar 

  32. Czech, M.P. PIP2 and PIP3: complex roles at the cell surface. Cell 100, 603–606 (2000).

    Article  CAS  Google Scholar 

  33. Khuong, T.M. et al. Synaptic PI(3,4,5)P3 is required for Syntaxin1A clustering and neurotransmitter release. Neuron 77, 1097–1108 (2013).

    Article  CAS  Google Scholar 

  34. Niesen, F.H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 (2007).

    Article  CAS  Google Scholar 

  35. Bottomley, M.J., Salim, K. & Panayotou, G. Phospholipid-binding protein domains. Biochim. Biophys. Acta 1436, 165–183 (1998).

    Article  CAS  Google Scholar 

  36. Bravo, J. et al. The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol. Cell 8, 829–839 (2001).

    Article  CAS  Google Scholar 

  37. Saheki, Y. & De Camilli, P. Synaptic vesicle endocytosis. Cold Spring Harb. Perspect. Biol. 4, a005645 (2012).

    Article  Google Scholar 

  38. Salkoff, L. & Kelly, L. Temperature-induced seizure and frequency-dependent neuromuscular block in a ts mutant of Drosophila. Nature 273, 156–158 (1978).

    Article  CAS  Google Scholar 

  39. Titus, S.A., Warmke, J.W. & Ganetzky, B. The Drosophila erg K+ channel polypeptide is encoded by the seizure locus. J. Neurosci. 17, 875–881 (1997).

    Article  CAS  Google Scholar 

  40. Krans, J.L., Rivlin, P.K. & Hoy, R.R. Demonstrating the temperature sensitivity of synaptic transmission in a Drosophila mutant. J. Undergrad. Neurosci. Educ. 4, A27–A33 (2005).

    PubMed  PubMed Central  Google Scholar 

  41. Rosato, E. & Kyriacou, C.P. Analysis of locomotor activity rhythms in Drosophila. Nat. Protoc. 1, 559–568 (2006).

    Article  Google Scholar 

  42. Harris, T.W., Hartwieg, E., Horvitz, H.R. & Jorgensen, E.M. Mutations in synaptojanin disrupt synaptic vesicle recycling. J. Cell Biol. 150, 589–600 (2000).

    Article  CAS  Google Scholar 

  43. Verstreken, P. et al. Tweek, an evolutionarily conserved protein, is required for synaptic vesicle recycling. Neuron 63, 203–215 (2009).

    Article  CAS  Google Scholar 

  44. Sklan, E.H. et al. TBC1D20 is a Rab1 GTPase-activating protein that mediates hepatitis C virus replication. J. Biol. Chem. 282, 36354–36361 (2007).

    Article  CAS  Google Scholar 

  45. Moravcevic, K., Oxley, C.L. & Lemmon, M.A. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20, 15–27 (2012).

    Article  CAS  Google Scholar 

  46. Kutateladze, T.G. Translation of the phosphoinositide code by PI effectors. Nat. Chem. Biol. 6, 507–513 (2010).

    Article  CAS  Google Scholar 

  47. Lemmon, M.A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).

    Article  CAS  Google Scholar 

  48. Slabbaert, J.R., Khuong, T.M. & Verstreken, P. Phosphoinositides at the neuromuscular junction of Drosophila melanogaster: a genetic approach. Methods Cell Biol. 108, 227–247 (2012).

    Article  CAS  Google Scholar 

  49. Marley, J., Lu, M. & Bracken, C. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75 (2001).

    Article  CAS  Google Scholar 

  50. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  51. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  52. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  53. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  54. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  55. Dolinsky, T.J. et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007).

    Article  Google Scholar 

  56. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & Mccammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  57. Jo, S., Kim, T., Iyer, V.G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article  CAS  Google Scholar 

  58. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  59. Papadopoulos, J.S. & Agarwala, R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073–1079 (2007).

    Article  CAS  Google Scholar 

  60. Di Tommaso, P. et al. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39, W13–W17 (2011).

    Article  CAS  Google Scholar 

  61. Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).

    Article  CAS  Google Scholar 

  62. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  Google Scholar 

  63. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the beamlines Proxima 2 of Soleil (France) and ID23-1 of ESRF (France) for assistance during data collection. We thank E. Lauwers and J. McInnes for advice on lipid biology and members of the Versées and Verstreken laboratories for comments. This work was supported by the Fonds voor Wetenschappelijk Onderzoek (J.P., V.U., P.V. and W.V.), Strategic Research Program Financing from the VUB (W.V.) and KU Leuven (P.V.), the Hercules foundation (W.V. and P.V.), BioStruct-X from the European Community's Seventh Framework Programme (W.V.), the ERC (P.V.), a Methusalem grant from the Flemish government (P.V.), the Belgian Science Policy (P.V.), Agentschap voor Innovatie door Wetenschap en Technologie (I.M.), the Belgian American Educational Foundation (K.L.) and VIB (P.V.).

Author information

Authors and Affiliations

Authors

Contributions

B.F. and J.P. solved the structures, produced and purified proteins, performed biochemical experiments, analyzed data and wrote the manuscript; K.L. performed biochemical and in vivo experiments, analyzed data and wrote the manuscript; C.D.K. assisted with biochemistry; I.M., S.K. and V.U. performed in vivo experiments; J.S. performed transmission electron microscopy; P.V. and W.V. conceived and supervised the work, contributed to data interpretation and wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Patrik Verstreken or Wim Versées.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Different crystal forms obtained for Sky1–353.

(a) Crystal form 1 obtained in the presence of 20% PEG 3350 and 0.2 M ammonium citrate tribasic pH 7.0.

(b) Crystal form 1 of the selenomethionine-labelled Sky1-353 obtained in the presence of 20% PEG 3350 and 0.2 M ammonium citrate tribasic pH 7.0

(c) Crystal form 2 obtained in the presence of 25% PEG 1500 and 0.1 M succinate/phosphate/glycine pH 7.0. This crystal form was used to obtain the Sky1-353-IP3 crystal structure after soaking with 5 mM IP3.

Supplementary Figure 2 Sequence alignment of Sky1–353 with the TBC domain of human TBC1D24 and representative RabGAP proteins for which the crystal structure has been reported.

The residues corresponding to the arginine and glutamine fingers in conventional TBC Rab-GAP proteins are highlighted in green. The residues corresponding to the cationic pocket residues in Sky are highlighted in blue. Residues corresponding to patient mutations are red, with those located in the cationic pocket additionally indicated by a red star. The α-helices determined from the Sky1-353 structure are indicated above the alignment, with the numbering corresponding to the numbering used in the Gyp1 structure. The sequences used are human TBC1D24 (UniProt: Q9ULP9), Gyp1 from Saccharomyces cerevisiae (UniProt: Q08484), human TBC1D1 (UniProt: Q86TI0), human TBC1D4 (Uniprot: O60343), human TBC1D7 (UniProt: Q9P0N9), human TBC1D11 (UniProt: Q9Y3P9), human TBC1D14 (UniProt: Q9P2M4), human TBC1D18 (UniProt: Q5R372), human TBC1D20 (UniProt: Q96BZ9), human TBC1D22A (UniProt: Q8WUA7), human TBC1D22B (UniProt: Q9NU19), CrfRabGAP from Chlamydomonas reinhardtii (UniProt: A8JCA4).

Supplementary Figure 3 Surface electrostatics of Sky1–353 in comparison to other TBC domains.

The electrostatic potential mapped on the solvent accessible surface of Sky1-353 in the first panel shows the cationic pocket located on the opposite side of the GTPase binding region. The electrostatic potential surfaces of the 11 other TBC domains deposited in the PDB are shown in exactly the same orientation. None of these proteins seems to harbor a well-defined cationic pocket similar to Sky1-353. The structures of the TBC domains shown in this figure are: Gyp1 (pdb 1FKM; Rak, A. et al., EMBO J. 19, 5105–13, 2000), TBC1D1 (pdb 3QYE; Park, S.-Y. et al., J. Biol. Chem. 286, 18130–8, 2011), TBC1D4 (pdb 3QYB; Park, S.-Y. et al., J. Biol. Chem. 286, 18130–8, 2011), TBC1D7 (pdb 3QWL; unpublished), TBC1D11 (pdb 4NC6; unpublished), TBC1D14 (pdb 2QQ8; unpublished), TBC1D18 (pdb 3HZJ; unpublished), TBC1D20 (pdb 4HL4; Gavriljuk, K. et al., Proc. Natl. Acad. Sci. U.S.A. 109, 21348–53, 2012), TBC1D22A (pdb 2QFZ; unpublished), TBC1D22B (pdb 3DZX; unpublished), CrfRabGAP (pdb 4P17; Bhogaraju, S. & Lorentzen, E. Proteins 82, 2282–7, 2014).

Supplementary Figure 4 Influence of PI(4,5)P2 and salt concentrations on the binding of Sky1–353 to liposomes.

(a) Western blots of liposome flotation assays using wild type Sky1-353 and liposomes (PC:PS) enriched with different concentrations of PI(4,5)P2 (0%, 0.5%, 2% and 5%). n = 2 independent experiments.

(b) Western blots of liposome flotation assays using wild type Sky1-353 and liposomes (PC:PS) enriched with 2% of PI(4,5)P2 in the presence of three different NaCl concentrations (30 mM, 150 mM and 500 mM). n = 2 independent experiments.

Original blots can be found in Supplementary Data Set 1.

Supplementary Figure 5 Comparison of the phosphoinositide-binding pocket of Sky1–353 with other typical phosphoinositide-binding domains.

Structures of representatives of well-established phosphoinositide-binding domains (ENTH, PX, FYVE and PH) in complex with a phosphoinositide head group are shown in electrostatic surface representation and are compared to the Sky1-353 structure in complex with IP3. The boxes show a close-up of the phosphoinositide binding pocket in cartoon representation with the phosphoinositide head group and the interacting residues shown as sticks. The structures that are shown are: the TBC domain of Sky bound to IP3 (this study), the ENTH domain of epsin bound to IP3 (pdb 1H0A; Ford, M. G. J. et al., Nature 419, 361–366, 2002), the PX domain of P40phox bound to dibutanoyl IP2 (pdb 1H6H; Bravo, J. et al., Mol. Cell 8, 829–39, 2001), the FYVE domain of EEA1 bound to IP2 (pdb 1JOC; Dumas, J. J. et al., Mol. Cell 8, 947–58, 2001), the PH domain of PLC-δ1 bound to IP3 (pdb 1MAI; Ferguson, K. M. et al., Cell 83, 1037–1046, 1995) and the PH domain of spectrin bound to IP3 (pdb 1BTN; Hyvönen, M. et al., EMBO J. 14, 4676–85, 1995).

Supplementary Figure 6 Wild-type and mutant Skywalker-GFP traffic to and are present at synaptic terminals

(a) Confocal images of the ventral nerve cord in third instar Drosophila larvae expressing wild type GFP-Sky (SkyWT) or mutant GFP-Sky (SkyR79C, SkyR281C or Sky3Glu). Scale bar for all top panels: 20 μm.

(b) Confocal images of larval neuromuscular junction endplates of animals with genotypes as in (a). (n = 6 animals), scale bar for all panels in (b): 20 μm. GFP intensities between the GFP-Sky mutants is not significantly different.

(c) Quantification of third-instar NMJ GFP intensity at the membrane in single confocal sections. Mean Fluorescence Intensity between the genotypes GFP-SkyWT, GFP-SkyR79C and GFP-Sky3Glu is similar. Error bars: mean ± s.e.m. (n = 6) P = 0.446, ns: not significant by ANOVA, Dunnett’s.

(d) Quantification of Western blot band intensity of GFP-Sky and GFP-Syt in protein isolations from adult fly heads. Intensities are normalized to Syntaxin control levels. GFP-Sky WT and mutant levels are similar. Error bars: mean ± s.e.m. (n = 3) P = 0.681, ns: not significant by ANOVA, Dunnett’s. The levels of Synaptotagmin-GFP (Syt) are shown as a control.

Source data

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1336 kb)

Supplementary Data Set 1

Uncropped blots for Figure 3 and Supplementary Figure 4. (PDF 3079 kb)

Seizure asssay of Drosophila carrying mutations in the cationic pocket of Sky.

Movie of behavior of adult sky1/2 Drosophila males (yw eyFLP/Y; FRT40A sky1:FRT40A sky2) expressing GFP-SkyWT, GFP-SkyR79C or GFP-Sky3Glu using nSybGal4, following 10 seconds of vortex stimulation. (MP4 1269 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, B., Lüthy, K., Paesmans, J. et al. Skywalker-TBC1D24 has a lipid-binding pocket mutated in epilepsy and required for synaptic function. Nat Struct Mol Biol 23, 965–973 (2016). https://doi.org/10.1038/nsmb.3297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing