Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation

Abstract

Ribonucleotides are frequently incorporated into DNA during replication in eukaryotes. Here we map genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5′ DNA end–mapping method, hydrolytic end sequencing (HydEn-seq). HydEn-seq of DNA from ribonucleotide excision repair–deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the roles of DNA polymerases α and δ in lagging-strand replication and of DNA polymerase ɛ in leading-strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-seq also reveals strand-specific 5′ DNA ends at mitochondrial replication origins, thus suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-seq can be used to track replication enzymology in other organisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping ribonucleotides by HydEn-seq.
Figure 2: Strand-specific ribonucleotide mapping of chromosome 10.
Figure 3: Genome-wide replication origins located by HydEn-seq.
Figure 4: Distribution of ribonucleotides near origins in RER-deficient strains.
Figure 5: Ribonucleotide base identity.
Figure 6: Meta-analysis of ribonucleotides at the nucleosome dyad.
Figure 7: HydEn-seq maps of mitochondrial DNA.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Johansson, E. & Dixon, N. Replicative DNA polymerases. Cold Spring Harb. Perspect. Biol. 5, a012799 (2013).

    Article  Google Scholar 

  2. Georgescu, R.E. et al. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat. Struct. Mol. Biol. 21, 664–670 (2014).

    Article  CAS  Google Scholar 

  3. Burgers, P.M. Polymerase dynamics at the eukaryotic DNA replication fork. J. Biol. Chem. 284, 4041–4045 (2009).

    Article  CAS  Google Scholar 

  4. Pursell, Z.F., Isoz, I., Lundstrom, E.B., Johansson, E. & Kunkel, T.A. Yeast DNA polymerase ɛ participates in leading-strand DNA replication. Science 317, 127–130 (2007).

    Article  CAS  Google Scholar 

  5. Lujan, S.A. et al. Mismatch repair balances leading and lagging strand DNA replication fidelity. PLoS Genet. 8, e1003016 (2012).

    Article  CAS  Google Scholar 

  6. Lujan, S.A. et al. Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome Res. 24, 1751–1764 (2014).

    Article  CAS  Google Scholar 

  7. Nick McElhinny, S.A., Gordenin, D.A., Stith, C.M., Burgers, P.M. & Kunkel, T.A. Division of labor at the eukaryotic replication fork. Mol. Cell 30, 137–144 (2008).

    Article  CAS  Google Scholar 

  8. Larrea, A.A. et al. Genome-wide model for the normal eukaryotic DNA replication fork. Proc. Natl. Acad. Sci. USA 107, 17674–17679 (2010).

    Article  CAS  Google Scholar 

  9. Balakrishnan, L. & Bambara, R.A. Okazaki fragment metabolism. Cold Spring Harb. Perspect. Biol. 5, a010173 (2013).

    Article  Google Scholar 

  10. Smith, D.J. & Whitehouse, I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483, 434–438 (2012).

    Article  CAS  Google Scholar 

  11. McGuffee, S.R., Smith, D.J. & Whitehouse, I. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. Mol. Cell 50, 123–135 (2013).

    Article  CAS  Google Scholar 

  12. Yeeles, J.T., Poli, J., Marians, K.J. & Pasero, P. Rescuing stalled or damaged replication forks. Cold Spring Harb. Perspect. Biol. 5, a012815 (2013).

    Article  Google Scholar 

  13. Ghosal, G. & Chen, J. DNA damage tolerance: a double-edged sword guarding the genome. Transl. Cancer Res. 2, 107–129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wanrooij, S. & Falkenberg, M. The human mitochondrial replication fork in health and disease. Biochim. Biophys. Acta 1797, 1378–1388 (2010).

    Article  CAS  Google Scholar 

  15. Gerhold, J.M., Aun, A., Sedman, T., Joers, P. & Sedman, J. Strand invasion structures in the inverted repeat of Candida albicans mitochondrial DNA reveal a role for homologous recombination in replication. Mol. Cell 39, 851–861 (2010).

    Article  CAS  Google Scholar 

  16. Reyes, A. et al. Mitochondrial DNA replication proceeds via a 'bootlace' mechanism involving the incorporation of processed transcripts. Nucleic Acids Res. 41, 5837–5850 (2013).

    Article  CAS  Google Scholar 

  17. Nick McElhinny, S.A. et al. Genome instability due to ribonucleotide incorporation into DNA. Nat. Chem. Biol. 6, 774–781 (2010).

    Article  CAS  Google Scholar 

  18. Sparks, J.L. et al. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47, 980–986 (2012).

    Article  CAS  Google Scholar 

  19. Williams, J.S. & Kunkel, T.A. Ribonucleotides in DNA: origins, repair and consequences. DNA Repair (Amst.) 19, 27–37 (2014).

    Article  CAS  Google Scholar 

  20. Williams, J.S. et al. Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol. Cell 49, 1010–1015 (2013).

    Article  CAS  Google Scholar 

  21. Lujan, S.A., Williams, J.S., Clausen, A.R., Clark, A.B. & Kunkel, T.A. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 50, 437–443 (2013).

    Article  CAS  Google Scholar 

  22. Pavlov, Y.I., Shcherbakova, P.V. & Kunkel, T.A. In vivo consequences of putative active site mutations in yeast DNA polymerases α, ɛ, δ, and ζ. Genetics 159, 47–64 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nick McElhinny, S.A. et al. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc. Natl. Acad. Sci. USA 107, 4949–4954 (2010).

    Article  CAS  Google Scholar 

  24. Siow, C.C., Nieduszynska, S.R., Muller, C.A. & Nieduszynski, C.A. OriDB, the DNA replication origin database updated and extended. Nucleic Acids Res. 40, D682–D686 (2012).

    Article  CAS  Google Scholar 

  25. Niimi, A. et al. Palm mutants in DNA polymerases α and η alter DNA replication fidelity and translesion activity. Mol. Cell. Biol. 24, 2734–2746 (2004).

    Article  CAS  Google Scholar 

  26. Nick McElhinny, S.A., Stith, C.M., Burgers, P.M. & Kunkel, T.A. Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase δ. J. Biol. Chem. 282, 2324–2332 (2007).

    Article  CAS  Google Scholar 

  27. Nick McElhinny, S.A., Kissling, G.E. & Kunkel, T.A. Differential correction of lagging-strand replication errors made by DNA polymerases α and δ. Proc. Natl. Acad. Sci. USA 107, 21070–21075 (2010).

    Article  CAS  Google Scholar 

  28. Bielinsky, A.K. & Gerbi, S.A. Chromosomal ARS1 has a single leading strand start site. Mol. Cell 3, 477–486 (1999).

    Article  CAS  Google Scholar 

  29. Clark, A.B., Lujan, S.A., Kissling, G.E. & Kunkel, T.A. Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ɛ. DNA Repair (Amst.) 10, 476–482 (2011).

    Article  CAS  Google Scholar 

  30. Ghodgaonkar, M.M. et al. Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol. Cell 50, 323–332 (2013).

    Article  CAS  Google Scholar 

  31. Clausen, A.R., Zhang, S., Burgers, P.M., Lee, M.Y. & Kunkel, T.A. Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase δ. DNA Repair (Amst.) 12, 121–127 (2013).

    Article  CAS  Google Scholar 

  32. Williams, J.S. et al. Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ɛ. DNA Repair (Amst.) 11, 649–656 (2012).

    Article  CAS  Google Scholar 

  33. Kim, N. et al. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332, 1561–1564 (2011).

    Article  CAS  Google Scholar 

  34. Potenski, C.J., Niu, H., Sung, P. & Klein, H.L. Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 511, 251–254 (2014).

    Article  CAS  Google Scholar 

  35. Allen-Soltero, S., Martinez, S.L., Putnam, C.D. & Kolodner, R.D. A Saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability. Mol. Cell. Biol. 34, 1521–1534 (2014).

    Article  Google Scholar 

  36. Reijns, M.A. et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 1008–1022 (2012).

    Article  CAS  Google Scholar 

  37. Hiller, B. et al. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 209, 1419–1426 (2012).

    Article  CAS  Google Scholar 

  38. Watt, D.L., Johansson, E., Burgers, P.M. & Kunkel, T.A. Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases. DNA Repair (Amst.) 10, 897–902 (2011).

    Article  CAS  Google Scholar 

  39. Clausen, A.R., Murray, M.S., Passer, A.R., Pedersen, L.C. & Kunkel, T.A. Structure-function analysis of ribonucleotide bypass by B family DNA replicases. Proc. Natl. Acad. Sci. USA 110, 16802–16807 (2013).

    Article  CAS  Google Scholar 

  40. Lazzaro, F. et al. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol. Cell 45, 99–110 (2012).

    Article  CAS  Google Scholar 

  41. Dalgaard, J.Z. Causes and consequences of ribonucleotide incorporation into nuclear DNA. Trends Genet. 28, 592–597 (2012).

    Article  CAS  Google Scholar 

  42. Anand, R.P., Lovett, S.T. & Haber, J.E. Break-induced DNA replication. Cold Spring Harb. Perspect. Biol. 5, a010397 (2013).

    Article  Google Scholar 

  43. Foury, F., Roganti, T., Lecrenier, N. & Purnelle, B. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 440, 325–331 (1998).

    Article  CAS  Google Scholar 

  44. Cerritelli, S.M. & Crouch, R.J. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276, 1494–1505 (2009).

    Article  CAS  Google Scholar 

  45. Grossman, L.I., Watson, R. & Vinograd, J. The presence of ribonucleotides in mature closed-circular mitochondrial DNA. Proc. Natl. Acad. Sci. USA 70, 3339–3343 (1973).

    Article  CAS  Google Scholar 

  46. Yang, M.Y. et al. Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111, 495–505 (2002).

    Article  CAS  Google Scholar 

  47. Kasiviswanathan, R. & Copeland, W.C. Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase. J. Biol. Chem. 286, 31490–31500 (2011).

    Article  CAS  Google Scholar 

  48. Shadel, G.S. & Clayton, D.A. Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66, 409–435 (1997).

    Article  CAS  Google Scholar 

  49. Bowmaker, M. et al. Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J. Biol. Chem. 278, 50961–50969 (2003).

    Article  CAS  Google Scholar 

  50. Fusté, J.M. et al. Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol. Cell 37, 67–78 (2010).

    Article  Google Scholar 

  51. Holt, I.J. & Reyes, A. Human mitochondrial DNA replication. Cold Spring Harb. Perspect. Biol. 4, a012971 (2012).

    Article  Google Scholar 

  52. Cerritelli, S.M. et al. Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol. Cell 11, 807–815 (2003).

    Article  CAS  Google Scholar 

  53. Vengrova, S. & Dalgaard, J.Z. The wild-type Schizosaccharomyces pombe mat1 imprint consists of two ribonucleotides. EMBO Rep. 7, 59–65 (2006).

    Article  CAS  Google Scholar 

  54. Koh, K.D., Balachander, S., Hesselberth, J.R., & Storici, F. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat. Methods 10.1038/nmeth.3259 (26 January 2015).

  55. Reijns, M.A.M. et al.Lagging strand replication shapes the mutational landscape of the genome. Nature 10.1038/nature14183 (26 January 2015).

  56. Daigaku, Y. et al. A global profile of replicative polymerase usage. Nat. Struct. Mol. Biol. (in the press).

  57. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17, 10–2 (2011).

    Article  Google Scholar 

  58. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  59. Larkin, M.A. et al. Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  60. Letunic, I. & Bork, P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475–W478 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Young and M. Longley for helpful comments on the manuscript. This work was supported by the Division of Intramural Research of the US National Institutes of Health (NIH), National Institute of Environmental Health Sciences (project Z01 ES065070 to T.A.K.) and by NIH grant 2R01GM052319-16A1 to P.A.M.

Author information

Authors and Affiliations

Authors

Contributions

A.R.C., D.J.S. and T.A.K. designed the experiments, A.R.C., C.D.O., J.S.W., M.F.C. and E.P.M. performed the experiments, A.R.C., S.A.L., A.B.B., D.C.F., P.A.M. and T.A.K. analyzed the data, T.A.K. wrote the manuscript, and all authors edited the manuscript.

Corresponding author

Correspondence to Thomas A Kunkel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Representative 5′ DNA end reads for the previously shown region of chromosome 10.

The region shown matches that of Fig. 2a, bottom panel. All strains are RER-defective (rnh201Δ). The numerical values on the right side of each tract indicate the maximum number of reads in that tract.

Supplementary Figure 2 Heat maps for RNH201 libraries.

Supplementary Figure 3 Evolutionary conservation of the three major eukaryotic nuclear replicases.

(a) Expanded from. Motif A is depicted for the three major eukaryotic nuclear replicases, with residues relevant to this study highlighted in bold and located immediately adjacent to the invariant tyrosine that acts as a steric gate to reduce ribonucleotide incorporation. The number of sequences found for each clade is are shown in parentheses. (b) RNase H2 subunit A catalytic motifs (Chon, H. et al. RNase H2 roles in genome integrity revealed by unlinking its activities. Nucleic Acids Research 41, 3130-3143 (2013)) are similar across the three kingdoms of life. (c) A phylogenetic tree shows RNase H2 subunit A conservation across all major taxa (2396 sequences; less than 1 false positive expected; see Supplementary Table 6).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–4 (PDF 1511 kb)

Supplementary Table 5

List of confirmed and new origins observed by HydEn-seq (XLSX 33 kb)

Supplementary Table 6

RNase H2 subunit A BLAST parameters and hits (XLSX 833 kb)

Supplementary Data Set 1

Uncropped gel image from Figure 1b (PDF 1949 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clausen, A., Lujan, S., Burkholder, A. et al. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 22, 185–191 (2015). https://doi.org/10.1038/nsmb.2957

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2957

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research