Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

How bidirectional becomes unidirectional

High-throughput RNA sequencing has unveiled the existence of a large number of noncoding antisense RNAs derived from bidirectional promoters; unlike sense transcripts, these RNAs are often unstable. Two recent reports investigate why downstream transcription is productive, whereas upstream transcripts are prone to degradation, revealing that an asymmetric distribution of polyadenylation signals and U1 snRNP–binding sites surrounding transcription start sites control the outcome of bidirectional transcription.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polyadenylation signals and U1 snRNP–binding sites surrounding the TSS control transcriptional directionality.

Katie Vicari

Figure 2: Polyadenylation and termination factors at the 3′ ends of uaRNAs/PROMPTs.

References

  1. Seila, A.C. et al. Science 322, 1849–1851 (2008).

    Article  CAS  Google Scholar 

  2. Preker, P. et al. Science 322, 1851–1854 (2008).

    Article  CAS  Google Scholar 

  3. Core, L.J., Waterfall, J.J. & Lis, J.T. Science 322, 1845–1848 (2008).

    Article  CAS  Google Scholar 

  4. He, Y., Vogelstein, B., Velculescu, V.E., Papadopoulos, N. & Kinzler, K.W. Science 322, 1855–1857 (2008).

    Article  CAS  Google Scholar 

  5. Preker, P. et al. Nucleic Acids Res. 39, 7179–7193 (2011).

    Article  CAS  Google Scholar 

  6. Xu, Z. et al. Nature 457, 1033–1037 (2009).

    Article  CAS  Google Scholar 

  7. Neil, H. et al. Nature 457, 1038–1042 (2009).

    Article  CAS  Google Scholar 

  8. Davis, C.A. & Ares, M. Jr. Proc. Natl. Acad. Sci. USA 103, 3262–3267 (2006).

    Article  CAS  Google Scholar 

  9. LaCava, J. et al. Cell 121, 713–724 (2005).

    Article  CAS  Google Scholar 

  10. Carroll, K.L., Pradhan, D.A., Granek, J.A., Clarke, N.D. & Corden, J.L. Mol. Cell. Biol. 24, 6241–6252 (2004).

    Article  CAS  Google Scholar 

  11. Carroll, K.L., Ghirlando, R., Ames, J.M. & Corden, J.L. RNA 13, 361–373 (2007).

    Article  CAS  Google Scholar 

  12. Vasiljeva, L. & Buratowski, S. Mol. Cell 21, 239–248 (2006).

    Article  CAS  Google Scholar 

  13. Vanácová, S. et al. PLoS Biol. 3, e189 (2005).

    Article  Google Scholar 

  14. Arigo, J.T., Eyler, D.E., Carroll, K.L. & Corden, J.L. Mol. Cell 23, 841–851 (2006).

    Article  CAS  Google Scholar 

  15. Wyers, F. et al. Cell 121, 725–737 (2005).

    Article  CAS  Google Scholar 

  16. Lubas, M. et al. Mol. Cell 43, 624–637 (2011).

    Article  CAS  Google Scholar 

  17. Ntini, E. et al. Nat. Struct. Mol. Biol. 20, 923–928 (2013).

    Article  CAS  Google Scholar 

  18. Colgan, D.F. & Manley, J.L. Genes Dev. 11, 2755–2766 (1997).

    Article  CAS  Google Scholar 

  19. Almada, A.E., Wu, X., Kriz, A.J., Burge, C.B. & Sharp, P.A. Nature 499, 360–363 (2013).

    Article  CAS  Google Scholar 

  20. Di Giammartino, D.C., Nishida, K. & Manley, J.L. Mol. Cell 43, 853–866 (2011).

    Article  CAS  Google Scholar 

  21. Kaida, D. et al. Nature 468, 664–668 (2010).

    Article  CAS  Google Scholar 

  22. Richard, P. & Manley, J.L. Genes Dev. 23, 1247–1269 (2009).

    Article  CAS  Google Scholar 

  23. Flynn, R.A., Almada, A.E., Zamudio, J.R. & Sharp, P.A. Proc. Natl. Acad. Sci. USA 108, 10460–10465 (2011).

    Article  CAS  Google Scholar 

  24. Shi, Y. et al. Mol. Cell 33, 365–376 (2009).

    Article  CAS  Google Scholar 

  25. Walowsky, C. et al. J. Biol. Chem. 274, 7302–7308 (1999).

    Article  CAS  Google Scholar 

  26. Wahle, E. Cell 66, 759–768 (1991).

    Article  CAS  Google Scholar 

  27. Kerwitz, Y. et al. EMBO J. 22, 3705–3714 (2003).

    Article  CAS  Google Scholar 

  28. Beaulieu, Y.B., Kleinman, C.L., Landry-Voyer, A.M., Majewski, J. & Bachand, F. PLoS Genet. 8, e1003078 (2012).

    Article  CAS  Google Scholar 

  29. Hsin, J.P. & Manley, J.L. Genes Dev. 26, 2119–2137 (2012).

    Article  CAS  Google Scholar 

  30. Jacquier, A. Nat. Rev. Genet. 10, 833–844 (2009).

    Article  CAS  Google Scholar 

  31. Seila, A.C., Core, L.J., Lis, J.T. & Sharp, P.A. Cell Cycle 8, 2557–2564 (2009).

    Article  CAS  Google Scholar 

  32. Buratowski, S. Science 322, 1804–1805 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Tian (Rutgers New Jersey Medical School) for sharing unpublished data. Work in the authors' laboratory was supported by US National Institutes of Health grant R01 GM28983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Manley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, P., Manley, J. How bidirectional becomes unidirectional. Nat Struct Mol Biol 20, 1022–1024 (2013). https://doi.org/10.1038/nsmb.2657

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing