Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for regulation of Arp2/3 complex by GMF

Abstract

The Arp2/3 complex mediates formation of complex cellular structures such as lamellipodia by nucleating branched actin filaments. Arp2/3-complex activity is precisely controlled by over a dozen regulators, yet the structural mechanism by which regulators interact with the complex is unknown. GMF is a recently discovered regulator of the Arp2/3 complex that can inhibit nucleation and disassemble branches. We solved the structure of the 240-kDa assembly of Mus musculus GMF and Bos taurus Arp2/3 complex and found that GMF binds the barbed end of Arp2, overlapping with the proposed binding site of WASP-family proteins. The structure suggests that GMF can bind branch junctions in the manner that cofilin binds filament sides, consistent with a modified cofilin-like mechanism for debranching by GMF. The GMF-Arp2 interface reveals how the ADF-H actin-binding domain in GMF is exploited to specifically recognize Arp2/3 complex and not actin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagram of Bos taurus Arp2/3 complex with bound Mus musculus GMFγ, ATP and calcium.
Figure 2: Interaction of GMF with the barbed end of Arp2.
Figure 3: Interaction of GMF with the ARPC1 subunit.
Figure 4: Binding of GMF causes ordering of subdomains 1 and 2 of Arp2.
Figure 5: Structural basis for the specificity of GMF for Arp2 over actin or Arp3.
Figure 6: GMF may block binding of C to the barbed end of Arp2.
Figure 7: Model of GMF bound to a branch junction.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Rotty, J.D., Wu, C. & Bear, J.E. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat. Rev. Mol. Cell Biol. 14, 7–12 (2013).

    Article  CAS  Google Scholar 

  2. Goley, E.D. & Welch, M.D. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7, 713–726 (2006).

    Article  CAS  Google Scholar 

  3. Campellone, K.G. & Welch, M.D. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237–251 (2010).

    Article  CAS  Google Scholar 

  4. Pollard, T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    Article  CAS  Google Scholar 

  5. Liu, S.L., Needham, K.M., May, J.R. & Nolen, B.J. Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin. J. Biol. Chem. 286, 17039–17046 (2011).

    Article  CAS  Google Scholar 

  6. Humphries, C.L. et al. Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin. J. Cell Biol. 159, 993–1004 (2002).

    Article  CAS  Google Scholar 

  7. Maul, R.S. et al. EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J. Cell Biol. 160, 399–407 (2003).

    Article  CAS  Google Scholar 

  8. Blanchoin, L., Pollard, T.D. & Hitchcock-DeGregori, S.E. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr. Biol. 11, 1300–1304 (2001).

    Article  CAS  Google Scholar 

  9. Maritzen, T. et al. Gadkin negatively regulates cell spreading and motility via sequestration of the actin-nucleating ARP2/3 complex. Proc. Natl. Acad. Sci. USA 109, 10382–10387 (2012).

    Article  CAS  Google Scholar 

  10. Rocca, D.L., Martin, S., Jenkins, E.L. & Hanley, J.G. Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat. Cell Biol. 10, 259–271 (2008).

    Article  CAS  Google Scholar 

  11. Yamakita, Y., Oosawa, F., Yamashiro, S. & Matsumura, F. Caldesmon inhibits Arp2/3-mediated actin nucleation. J. Biol. Chem. 278, 17937–17944 (2003).

    Article  CAS  Google Scholar 

  12. Gandhi, M. et al. GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr. Biol. 20, 861–867 (2010).

    Article  CAS  Google Scholar 

  13. Ti, S.C., Jurgenson, C.T., Nolen, B.J. & Pollard, T.D. Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex. Proc. Natl. Acad. Sci. USA 108, E463–E471 (2011).

    Article  CAS  Google Scholar 

  14. Nakano, K., Kuwayama, H., Kawasaki, M., Numata, O. & Takaine, M. GMF is an evolutionarily developed Adf/cofilin-super family protein involved in the Arp2/3 complex-mediated organization of the actin cytoskeleton. Cytoskeleton (Hoboken) 67, 373–382 (2010).

    CAS  Google Scholar 

  15. Ikeda, K. et al. Glia maturation factor-γ is preferentially expressed in microvascular endothelial and inflammatory cells and modulates actin cytoskeleton reorganization. Circ. Res. 99, 424–433 (2006).

    Article  CAS  Google Scholar 

  16. Poukkula, M., Kremneva, E., Serlachius, M. & Lappalainen, P. Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken) 68, 471–490 (2011).

    Article  CAS  Google Scholar 

  17. Mooren, O.L., Galletta, B.J. & Cooper, J.A. Roles for actin assembly in endocytosis. Annu. Rev. Biochem. 81, 661–686 (2012).

    Article  CAS  Google Scholar 

  18. Ydenberg, C. et al. GMF severs actin-Arp2/3 complex branch junctions by a cofilin-like mechanism. Curr. Biol. 23, 1–9 (2013).

    Article  Google Scholar 

  19. Nolen, B.J., Littlefield, R.S. & Pollard, T.D. Crystal structures of actin-related protein 2/3 complex with bound ATP or ADP. Proc. Natl. Acad. Sci. USA 101, 15627–15632 (2004).

    Article  CAS  Google Scholar 

  20. Paavilainen, V.O., Oksanen, E., Goldman, A. & Lappalainen, P. Structure of the actin-depolymerizing factor homology domain in complex with actin. J. Cell Biol. 182, 51–59 (2008).

    Article  CAS  Google Scholar 

  21. Galkin, V.E. et al. Remodeling of actin filaments by ADF/cofilin proteins. Proc. Natl. Acad. Sci. USA 108, 20568–20572 (2011).

    Article  CAS  Google Scholar 

  22. Goroncy, A.K. et al. NMR solution structures of actin depolymerizing factor homology domains. Protein Sci. 18, 2384–2392 (2009).

    Article  CAS  Google Scholar 

  23. Lappalainen, P., Fedorov, E.V., Fedorov, A.A., Almo, S.C. & Drubin, D.G. Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. EMBO J. 16, 5520–5530 (1997).

    Article  CAS  Google Scholar 

  24. Bamburg, J.R. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15, 185–230 (1999).

    Article  CAS  Google Scholar 

  25. Dominguez, R. Actin-binding proteins: a unifying hypothesis. Trends Biochem. Sci. 29, 572–578 (2004).

    Article  CAS  Google Scholar 

  26. Nolen, B.J. & Pollard, T.D. Insights into the influence of nucleotides on actin family proteins from seven structures of Arp2/3 complex. Mol. Cell 26, 449–457 (2007).

    Article  CAS  Google Scholar 

  27. Martin, A.C., Welch, M.D. & Drubin, D.G. Arp2/3 ATP hydrolysis-catalysed branch dissociation is critical for endocytic force generation. Nat. Cell Biol. 8, 826–833 (2006).

    Article  CAS  Google Scholar 

  28. Ingerman, E., Hsiao, J.Y. & Mullins, R.D. Arp2/3 complex ATP hydrolysis promotes lamellipodial actin network disassembly but is dispensable for assembly. J. Cell Biol. 200, 619–633 (2013).

    Article  CAS  Google Scholar 

  29. Otterbein, L.R., Graceffa, P. & Dominguez, R. The crystal structure of uncomplexed actin in the ADP state. Science 293, 708–711 (2001).

    Article  CAS  Google Scholar 

  30. Hetrick, B., Han, M.S., Helgeson, L.A. & Nolen, B.J. Small molecules CK-666 and CK-869 inhibit Arp2/3 complex by blocking an activating conformational change. Chem. Biol. 701–712 (2013).

  31. Padrick, S.B., Doolittle, L.K., Brautigam, C.A., King, D.S. & Rosen, M.K. Arp2/3 complex is bound and activated by two WASP proteins. Proc. Natl. Acad. Sci. USA 108, E472–E479 (2011).

    Article  CAS  Google Scholar 

  32. Panchal, S.C., Kaiser, D.A., Torres, E., Pollard, T.D. & Rosen, M.K. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nat. Struct. Biol. 10, 591–598 (2003).

    Article  CAS  Google Scholar 

  33. Chereau, D. et al. Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc. Natl. Acad. Sci. USA 102, 16644–16649 (2005).

    Article  CAS  Google Scholar 

  34. Irobi, E. et al. Structural basis of actin sequestration by thymosin-β4: implications for WH2 proteins. EMBO J. 23, 3599–3608 (2004).

    Article  CAS  Google Scholar 

  35. Marchand, J.B., Kaiser, D.A., Pollard, T.D. & Higgs, H.N. Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nat. Cell Biol. 3, 76–82 (2001).

    Article  CAS  Google Scholar 

  36. Balcer, H.I., Daugherty-Clarke, K. & Goode, B.L. The p40/ARPC1 subunit of Arp2/3 complex performs multiple essential roles in WASp-regulated actin nucleation. J. Biol. Chem. 285, 8481–8491 (2010).

    Article  CAS  Google Scholar 

  37. Chan, C., Beltzner, C.C. & Pollard, T.D. Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr. Biol. 19, 537–545 (2009).

    Article  CAS  Google Scholar 

  38. Rouiller, I. et al. The structural basis of actin filament branching by the Arp2/3 complex. J. Cell Biol. 180, 887–895 (2008).

    Article  CAS  Google Scholar 

  39. Boczkowska, M. et al. X-Ray scattering study of activated Arp2/3 complex with bound actin-WCA. Structure 16, 695–704 (2008).

    Article  CAS  Google Scholar 

  40. Weaver, A.M. et al. Interaction of cortactin and N-WASp with Arp2/3 complex. Curr. Biol. 12, 1270–1278 (2002).

    Article  CAS  Google Scholar 

  41. Uruno, T., Liu, J., Li, Y., Smith, N. & Zhan, X. Sequential interaction of actin-related proteins 2 and 3 (Arp2/3) complex with neural Wiscott-Aldrich syndrome protein (N-WASP) and cortactin during branched actin filament network formation. J. Biol. Chem. 278, 26086–26093 (2003).

    Article  CAS  Google Scholar 

  42. Mahaffy, R.E. & Pollard, T.D. Kinetics of the formation and dissociation of actin filament branches mediated by Arp2/3 complex. Biophys. J. 91, 3519–3528 (2006).

    Article  CAS  Google Scholar 

  43. Cai, L., Makhov, A.M., Schafer, D.A. & Bear, J.E. Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 134, 828–842 (2008).

    Article  CAS  Google Scholar 

  44. Weaver, A.M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001).

    Article  CAS  Google Scholar 

  45. Bernstein, B.W. & Bamburg, J.R. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil. 2, 1–8 (1982).

    Article  CAS  Google Scholar 

  46. Graceffa, P. & Dominguez, R. Crystal structure of monomeric actin in the ATP state. Structural basis of nucleotide-dependent actin dynamics. J. Biol. Chem. 278, 34172–34180 (2003).

    Article  CAS  Google Scholar 

  47. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010).

    Article  CAS  Google Scholar 

  48. Nolen, B.J. & Pollard, T.D. Structure and biochemical properties of fission yeast ARP2/3 complex lacking the ARP2 subunit. J. Biol. Chem. 283, 26490–26498 (2008).

    Article  CAS  Google Scholar 

  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data dollected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  50. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  51. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Results shown in this report are derived from work performed at Argonne National Laboratory, Structural Biology Center at the Advanced Photon Source, beamline 19ID. Argonne is operated by University of Chicago Argonne, LLC, for the US Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357. We thank S. Ginell, J. Lazarz, B. Nocek and Y. Kim for assistance with remote data collection. We thank B. Goode (Brandeis University, Waltham, Massachusetts, USA) for sending mouse GMFγ expression plasmids and for discussing unpublished observations, and K. Needham for help with cloning and protein purification. We would also like to acknowledge K. Prehoda for comments on the manuscript. This work was financially supported by a US National Institutes of Health grant GM092917 (to B.J.N.) and the Pew Scholars in the Biomedical Sciences program.

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and B.J.N. designed the research; Q.L. performed all experiments; Q.L. and B.J.N. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Brad J Nolen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 2370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, Q., Nolen, B. Structural basis for regulation of Arp2/3 complex by GMF. Nat Struct Mol Biol 20, 1062–1068 (2013). https://doi.org/10.1038/nsmb.2628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing