Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming

Abstract

Homologous to E6-AP C terminus (HECT) E3 ligases recognize and directly catalyze ligation of ubiquitin (Ub) to their substrates. Molecular details of this process remain unknown. We report the first structure, to our knowledge, of a Ub-loaded E3, the human neural precursor cell–expressed developmentally downregulated protein 4 (Nedd4). The HECTNedd4~Ub transitory intermediate provides a structural basis for the proposed sequential addition mechanism. The donor Ub, transferred from the E2, is bound to the Nedd4 C lobe with its C-terminal tail locked in an extended conformation, primed for catalysis. We provide evidence that the Nedd4-family members are Lys63-specific enzymes whose catalysis is mediated by an essential C-terminal acidic residue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Ub-loaded Nedd4 HECT in complex with Ub.
Figure 2: UbD is primed for catalysis by C-terminal tail-locking.
Figure 3: The C-terminal acidic residue is critical for the catalysis of Nedd4 family members.
Figure 4: Ub chain specificity of Nedd4 family members.
Figure 5: Critical role of the helix α14 for HECT C-terminal positioning.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

    Article  CAS  Google Scholar 

  2. Scheffner, M. & Staub, O. HECT E3s and human disease. BMC Biochem. 8 (suppl. 1), S6 (2007).

    Article  Google Scholar 

  3. Marín, I. Animal HECT ubiquitin ligases: evolution and functional implications. BMC Evol. Biol. 10, 56 (2010).

    Article  Google Scholar 

  4. Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10, 398–409 (2009).

    Article  CAS  Google Scholar 

  5. Verdecia, M.A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 11, 249–259 (2003).

    Article  CAS  Google Scholar 

  6. Kamadurai, H.B. et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B~ubiquitin-HECT(NEDD4L) complex. Mol. Cell 36, 1095–1102 (2009).

    Article  CAS  Google Scholar 

  7. Kim, H.C., Steffen, A.M., Oldham, M.L., Chen, J. & Huibregtse, J.M. Structure and function of a HECT domain ubiquitin-binding site. EMBO Rep. 12, 334–341 (2011).

    Article  CAS  Google Scholar 

  8. Maspero, E. et al. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12, 342–349 (2011).

    Article  CAS  Google Scholar 

  9. Kim, H.C. & Huibregtse, J.M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell Biol. 29, 3307–3318 (2009).

    Article  CAS  Google Scholar 

  10. Wang, M. & Pickart, C.M. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J. 24, 4324–4333 (2005).

    Article  CAS  Google Scholar 

  11. Remaut, H. & Waksman, G. Protein-protein interaction through β-strand addition. Trends Biochem. Sci. 31, 436–444 (2006).

    Article  CAS  Google Scholar 

  12. Wang, M., Cheng, D., Peng, J. & Pickart, C.M. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J. 25, 1710–1719 (2006).

    Article  CAS  Google Scholar 

  13. Dou, H., Buetow, L., Sibbet, G.J., Cameron, K. & Huang, D.T. BIRC7–E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 19, 876–883 (2012).

    Article  CAS  Google Scholar 

  14. Plechanovová, A., Jaffray, E.G., Tatham, M.H., Naismith, J.H. & Hay, R.T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).

    Article  Google Scholar 

  15. Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex. Nature 435, 687–692 (2005).

    Article  CAS  Google Scholar 

  16. Salvat, C., Wang, G., Dastur, A., Lyon, N. & Huibregtse, J.M. The -4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases. J. Biol. Chem. 279, 18935–18943 (2004).

    Article  CAS  Google Scholar 

  17. Ronchi, V.P., Klein, J.M. & Haas, A.L. E6AP/UBE3A ubiquitin ligase harbors two e2~ubiquitin binding sites. J. Biol. Chem. published online, doi:10.1074/jbc.M113.458059 (25 February 2013).

  18. Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006).

    Article  Google Scholar 

  19. Woelk, T. et al. Molecular mechanisms of coupled monoubiquitination. Nat. Cell Biol. 8, 1246–1254 (2006).

    Article  CAS  Google Scholar 

  20. Serniwka, S.A., & Shaw, G.S. The structure of the UbcH8-ubiquitin complex shows a unique ubiquitin interaction site. Biochemistry 48, 12169–12179 (2009).

    Article  CAS  Google Scholar 

  21. Dimasi, N., Flot, D., Dupeux, F. & Marquez, J.A. Expression, crystallization and X-ray data collection from microcrystals of the extracellular domain of the human inhibitory receptor expressed on myeloid cells IREM-1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63, 204–208 (2007).

    Article  CAS  Google Scholar 

  22. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  23. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–189 (2010).

    Article  CAS  Google Scholar 

  24. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  25. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  26. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  27. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  28. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Romano for critically reading the manuscript and for helpful discussions and advice and the staff at the European Synchrotron Radiation Facility and Swiss Light Source for assistance in data collection. This work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC, IG11627), the European Community (Network of Excellence FP6, 100601–201012) and the European Molecular Biology Organization Young Investigator Program to S. Polo. Access to the High Throughput Crystallization Laboratory of the European Molecular Biology Laboratory Grenoble outstation was funded by the European Community's Seventh Framework Programme (FP7/2007-2013) PCUBE (grant agreement 227764).

Author information

Authors and Affiliations

Authors

Contributions

E.M. conducted the experiments with the help of E.V. and S.M.; V.C. assisted in crystallization; P.S. carried out MS analysis; S. Pasqualato performed structure determination and description; S. Pasqualato and E.M. participated in experimental design and data analysis; S. Polo conceived of the project, interpreted the results and wrote the paper.

Corresponding authors

Correspondence to Sebastiano Pasqualato or Simona Polo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 7879 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maspero, E., Valentini, E., Mari, S. et al. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat Struct Mol Biol 20, 696–701 (2013). https://doi.org/10.1038/nsmb.2566

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2566

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing