Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preferential D-loop extension by a translesion DNA polymerase underlies error-prone recombination

Abstract

Although homologous recombination is considered an accurate form of DNA repair, genetics suggest that the Escherichia coli translesion DNA polymerase IV (Pol IV, also known as DinB) promotes error-prone recombination during stress, which allows cells to overcome adverse conditions. However, how Pol IV functions and is regulated during recombination under stress is unknown. We show that Pol IV is highly proficient in error-prone recombination and is preferentially recruited to displacement loops (D loops) at stress-induced concentrations in vitro. We also found that high-fidelity Pol II switches to exonuclease mode at D loops, which is stimulated by topological stress and reduced deoxyribonucleotide pool concentration during stationary phase. The exonuclease activity of Pol II enables it to compete with Pol IV, which probably suppresses error-prone recombination. These findings indicate that preferential D-loop extension by Pol IV facilitates error-prone recombination and explain how Pol II reduces such errors in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pol IV is highly proficient and error prone in recombination-directed replication.
Figure 2: High levels of Pol IV comparable to those in SOS-induced cells facilitate its recruitment to D loops.
Figure 3: Pol II switches to an active exonuclease mode at D loops.
Figure 4: Pol II requires a functional exonuclease domain to compete with Pol IV at D loops.
Figure 5: Levels of Pol IV corresponding to RpoS-induced cells allow it to limit Pol II exonuclease activity at D loops.
Figure 6: Model of translesion DNA polymerase activity at D loops during stress.

Similar content being viewed by others

References

  1. Cox, M.M. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu. Rev. Genet. 35, 53–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cox, M.M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Mazon, G., Mimitou, E.P. & Symington, L.S. SnapShot: homologous recombination in DNA double-strand break repair. Cell 142, 646, 646.e1 (2010).

    Article  PubMed  Google Scholar 

  4. Li, X. & Heyer, W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18, 99–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Heller, R.C. & Marians, K.J. Replisome assembly and the direct restart of stalled replication forks. Nat. Rev. Mol. Cell Biol. 7, 932–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Zahradka, K. et al. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443, 569–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Motamedi, M.R., Szigety, S.K. & Rosenberg, S.M. Double-strand–break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo. Genes Dev. 13, 2889–2903 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lydeard, J.R. et al. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev. 24, 1133–1144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawamoto, T. et al. Dual roles for DNA polymerase η in homologous DNA recombination and translesion DNA synthesis. Mol. Cell 20, 793–799 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Kane, D.P., Shusterman, M., Rong, Y. & McVey, M. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila. PLoS Genet. 8, e1002659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, X., Stith, C.M., Burgers, P.M. & Heyer, W.D. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta. Mol. Cell 36, 704–713 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hashimoto, Y., Puddu, F. & Costanzo, V. RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat. Struct. Mol. Biol. 19, 17–24 (2012).

    Article  CAS  Google Scholar 

  13. Moldovan, G.L. et al. DNA polymerase POLN participates in cross-link repair and homologous recombination. Mol. Cell Biol. 30, 1088–1096 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. McIlwraith, M.J. et al. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell 20, 783–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Kohzaki, M. et al. DNA polymerases ν and θ are required for efficient immunoglobulin V gene diversification in chicken. J. Cell Biol. 189, 1117–1127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenberg, S.M. Evolving responsively: adaptive mutation. Nat. Rev. Genet. 2, 504–515 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Ponder, R.G., Fonville, N.C. & Rosenberg, S.M. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol. Cell 19, 791–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. McKenzie, G.J., Lee, P.L., Lombardo, M.J., Hastings, P.J. & Rosenberg, S.M. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol. Cell 7, 571–579 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Foster, P.L. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42, 373–397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hastings, P.J. et al. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells. PLoS ONE 5, e10862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shee, C., Gibson, J.L. & Rosenberg, S.M. Two mechanisms produce mutation hotspots at DNA breaks in Escherichia coli. Cell Rep. 2, 714–721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harris, R.S., Bull, H.J. & Rosenberg, S.M. A direct role for DNA polymerase III in adaptive reversion of a frameshift mutation in Escherichia coli. Mutat. Res. 375, 19–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Schlacher, K., Cox, M.M., Woodgate, R. & Goodman, M.F. RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442, 883–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Petrosino, J.F., Galhardo, R.S., Morales, L.D. & Rosenberg, S.M. Stress-induced β-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J. Bacteriol. 191, 5881–5889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, S.R., Matsui, K., Yamada, M., Gruz, P. & Nohmi, T. Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Mol. Genet. Genomics 266, 207–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Tippin, B., Pham, P. & Goodman, M.F. Error-prone replication for better or worse. Trends Microbiol. 12, 288–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Akerlund, T., Nordstrom, K. & Bernander, R. Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J. Bacteriol. 177, 6791–6797 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Withers, H.L. & Bernander, R. Characterization of dnaC2 and dnaC28 mutants by flow cytometry. J. Bacteriol. 180, 1624–1631 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Godoy, V.G. et al. UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol. Cell 28, 1058–1070 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi, S., Valentine, M.R., Pham, P., O'Donnell, M. & Goodman, M.F. Fidelity of Escherichia coli DNA polymerase IV. Preferential generation of small deletion mutations by dNTP-stabilized misalignment. J. Biol. Chem. 277, 34198–34207 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Galhardo, R.S. et al. DinB upregulation is the sole role of the SOS response in stress-induced mutagenesis in Escherichia coli. Genetics 182, 55–68 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, L. & Marians, K.J. PriA mediates DNA replication pathway choice at recombination intermediates. Mol. Cell 11, 817–826 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Shlomai, J. & Kornberg, A. A prepriming DNA replication enzyme of Escherichia coli. I. Purification of protein n′: a sequence-specific, DNA-dependent ATPase. J. Biol. Chem. 255, 6789–6793 (1980).

    CAS  PubMed  Google Scholar 

  34. Frisch, R.L. et al. Separate DNA Pol II– and Pol IV–dependent pathways of stress-induced mutation during double-strand–break repair in Escherichia coli are controlled by RpoS. J. Bacteriol. 192, 4694–4700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Foster, P.L., Gudmundsson, G., Trimarchi, J.M., Cai, H. & Goodman, M.F. Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 7951–7955 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bonner, C.A. et al. Purification and characterization of an inducible Escherichia coli DNA polymerase capable of insertion and bypass at abasic lesions in DNA. J. Biol. Chem. 263, 18946–18952 (1988).

    CAS  PubMed  Google Scholar 

  37. Cai, H., Yu, H., McEntee, K., Kunkel, T.A. & Goodman, M.F. Purification and properties of wild-type and exonuclease-deficient DNA polymerase II from Escherichia coli. J. Biol. Chem. 270, 15327–15335 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Goodman, M.F. et al. DNA Replication and Mutagenesis (American Society for Microbiology, Washington, D.C., 1988).

  39. Buckstein, M.H., He, J. & Rubin, H. Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J. Bacteriol. 190, 718–726 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Ibarra, B. et al. Proofreading dynamics of a processive DNA polymerase. EMBO J. 28, 2794–2802 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Downey, C.D. & McHenry, C.S. Chaperoning of a replicative polymerase onto a newly assembled DNA-bound sliding clamp by the clamp loader. Mol. Cell 37, 481–491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baker, T. & Kornberg, A. DNA Replication, 2nd edn (University Science Books, 1992).

  43. Lovett, S.T. Replication arrest-stimulated recombination: dependence on the RecA paralog, RadA/Sms and translesion polymerase, DinB. DNA Repair (Amst.) 5, 1421–1427 (2006).

    Article  CAS  Google Scholar 

  44. Register, J.C. III & Griffith, J. Direct visualization of RecA protein binding to and unwinding duplex DNA following the D-loop cycle. J. Biol. Chem. 263, 11029–11032 (1988).

    CAS  PubMed  Google Scholar 

  45. Indiani, C., McInerney, P., Georgescu, R., Goodman, M.F. & O'Donnell, M. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol. Cell 19, 805–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Georgescu, R.E. et al. Mechanism of polymerase collision release from sliding clamps on the lagging strand. EMBO J. 28, 2981–2991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davey, M.J., Fang, L., McInerney, P., Georgescu, R.E. & O'Donnell, M. The DnaC helicase loader is a dual ATP/ADP switch protein. EMBO J. 21, 3148–3159 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Indiani, C., Langston, L.D., Yurieva, O., Goodman, M.F. & O'Donnell, M. Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase. Proc. Natl. Acad. Sci. USA 106, 6031–6038 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaplan, D.L. & O'Donnell, M. RuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration. J. Mol. Biol. 355, 473–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. McInerney, P. & O'Donnell, M. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J. Biol. Chem. 279, 21543–21551 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Pomerantz, R.T. & O'Donnell, M. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456, 762–766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Skangalis, D. Zhang and O. Yurieva for technical support. This work was supported by the US National Institutes of Health (grants to M.E.O. (GM38839), R.T.P. (K99CA160648) and M.F.G. (GM21422 and ES012259)) and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

R.T.P. conceived the idea for the study, wrote the manuscript and performed and interpreted all experiments, with the exception of those in Figure 3i,j, which were performed by I.K. M.E.O. and M.F.G. provided editorial input.

Corresponding author

Correspondence to Mike E O'Donnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 870 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomerantz, R., Kurth, I., Goodman, M. et al. Preferential D-loop extension by a translesion DNA polymerase underlies error-prone recombination. Nat Struct Mol Biol 20, 748–755 (2013). https://doi.org/10.1038/nsmb.2573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing