Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction with Shc prevents aberrant Erk activation in the absence of extracellular stimuli

Abstract

Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a new mechanism by which the adaptor protein Shc directly binds the MAP kinase Erk, thus preventing its activation in the absence of extracellular stimuli. The Shc–Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex forms through unique binding sites on both the Shc PTB domain and the N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc—induced through interaction with the phosphorylated receptor—releases Erk, allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered a tumor suppressor in human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shc forms a complex with Erk in the absence of extracellular stimulation.
Figure 2: ShcPTB-Erk interaction.
Figure 3: Determination of the binding interface between ShcPTB and Erk.
Figure 4: Shc binding has an inhibitory effect on Erk phosphorylation.
Figure 5: Shc controls pErk levels in C. elegans.
Figure 6: Binding of the ShcPTB domain to tyrosine-phosphorylated protein inhibits Shc-Erk interaction.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Davol, P.A., Bagdasaryan, T.P., Elfenbein, G.J., Maizel, A.I. & Frackleton, A.R. Jr. Shc proteins are strong independent markers for both node-negative and node-positive primary breast cancer. Cancer Res. 63, 6772–6783 (2003).

    CAS  PubMed  Google Scholar 

  2. Frackleton, A.R. Jr. et al. p66 Shc and tyrosine phosphorylated Shc in primary breast tumors identify patients likely to relapse despite tamoxifen therapy. Breast Cancer Res. 8, R73 (2006).

    Article  Google Scholar 

  3. Ursini-Siegel, J. & Muller, W. The ShcA protein is a critical regulator of breast cancer progression. Cell Cycle 7, 1936–1943 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Dankort, D. et al. Grb2 and Shc adaptor proteins play distinct roles in neu (Erb-2)-induced mammary tumorigenesis: implications for human breast cancer. Mol. Cell Biol. 21, 1540–1551 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siegel, P.M., Shu, W.P., Cardiff, R.D., Muller, W.J. & Massague, J. Transforming growth factor β signaling impairs Neu-induced mammary tumorigenisis while promoting pulmonary metastasis. Proc. Natl. Acad. Sci. USA 100, 8430–8435 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marone, R. et al. Memo mediates ErbB2-driven cell motility. Nat. Cell Biol. 6, 515–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Muraoka-Cook, R.S. et al. Conditional overexpression of active transforming growth factor β1 in vivo accelerates migration of transgenic mammary tumors. Cancer Res. 64, 9002–9011 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Muraoka-Cook, R.S. et al. Activated type I TGFβ receptor kinase enhances the survival of mammary epithelial cells and accelerated tumor progression. Oncogene 25, 3408–3423 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Ursini-Siegel, J. et al. Shc signaling is essential for tumour progression in mouse models of human breast cancer. EMBO J. 27, 910–920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Northey, J.J. et al. Signaling through ShcA is required for TGFβ and Neu/ErbB-2-induced breast cancer cell motility and invasion. Mol. Cell Biol. 28, 3162–3176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Audero, E. et al. Adaptor ShcA protein binds tyrosine kinase Tie2 receptor and regulates migration and sprouting but not survival of endothelial cells. J. Biol. Chem. 279, 13224–13233 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. van der Geer, P., Wiley, S., Gish, G.D. & Pawson, T. The Shc adaptor protein is highly phosphorylated at conserved twin tyrosine residues (Y239/240) that mediate protein-protein interactions. Curr. Biol. 6, 1435–1444 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Ravichandran, K.S. et al. Evidence for a requirement for both phospholipid and phosphotyrosine binding via the Shc phosphotyrosine-binding domain in vivo. Mol. Cell Biol. 17, 5540–5549 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sweet, D.T. & Tzima, E. Spatial signaling networks converge at the adaptor protein Shc. Cell Cycle 8, 231–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. George, R., Schüller, A.C., Harris, R. & Ladbury, J.E. A phosphorylation-dependent gating mechanism controls the SH2 domain interactions of the Shc adaptor protein. J. Mol. Biol. 377, 740–747 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Ursini-Siegel, J. et al. The ShcA SH2 domain engages a 14-3-3/PI3′K signaling complex and promotes breast cancer cell survival. Oncogene 31, 5038–5044 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Kolch, W. Coordinating ERK/MAPK signaling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6, 827–837 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Garrington, T.P. & Johnson, G.L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11, 211–218 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Steinmetz, R. et al. Mechanisms regulating the constitutive activation of the extracellular signal-regulated kinase (ERK) signaling pathway in ovarian cancer and the effect of ribonucleic acid interference for ERK1/2 on cancer cell proliferation. Mol. Endocrinol. 18, 2570–2582 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Price, D.T. et al. Activation of extracellular signal-regulated kinase in human prostate cancer. J. Urol. 162, 1537–1542 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, B. et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40 and RANK that regulates cell proliferation and survival. Blood 102, 1019–1027 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Fukuda, M., Gotoh, Y. & Nishida, E. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16, 1901–1908 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoon, S. & Seger, R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 21–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Arur, S. et al. Multiple ERK substrates execute single biological processes in Caenorhabdtis elegans germ-line development. Proc. Natl. Acad. Sci. USA 106, 4776–4781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlson, S.M. et al. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci. Signal. 4, rs11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Khokhlatchev, A.V. et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605–615 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Marshall, C.J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Murphy, L.O. & Blenis, J. MAPK signal specificity: the right place at the right time. Trends Biochem. Sci. 31, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Dougherty, M.K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Schüller, A.C. et al. Indirect recruitment of the signalling adaptor Shc to the fibroblast growth factor receptor 2 (FGFR2). Biochem. J. 416, 189–199 (2008).

    Article  PubMed  Google Scholar 

  31. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, M.M. et al. Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378, 584–592 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Akella, R., Moon, T.M. & Goldsmith, E.J. Unique MAP kinase binding sites. Biochim. Biophys. Acta 1784, 48–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Treisman, R. The serum response element. Trends Biochem. Sci. 17, 423–426 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, M.H. et al. Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 177, 2039–2062 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arur, S. et al. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module. Dev. Cell 20, 677–688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farooq, A., Zeng, L., Yan, K.S., Ravichandran, K.S. & Zhou, M.M. Coupling of folding and binding in the PTB domain of signaling protein Shc. Structure 11, 905–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Lin, C.-C. et al. Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell 149, 1514–1524 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Ravichandran, K.S. Signaling via Shc family adapter proteins. Oncogene 20, 6322–6330 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Hardy, W.R. et al. Combinatorial ShcA docking interactions support diversity in tissue morphogenesis. Science 317, 251–256 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. George, R. et al. A complex of Shc and Ran-GTPase localises to the cell nucleus. Cell Mol. Life Sci. 66, 711–720 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Ramos, J.W. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int. J. Biochem. Cell Biol. 40, 2707–2719 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Bhattacharyya, R.P. et al. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311, 822–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Ugi, S., Imamura, T., Ricketts, W. & Olefsky, J.M. Protein phosphatase 2A forms a molecular complex with Shc and regulates Shc tyrosine phosphorylation and downstream mitogenic signaling. Mol. Cell Biol. 22, 2375–2387 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Formstecher, E. et al. PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell 1, 239–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Morrison, D.K. & Davis, R.J. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Torii, S., Kusakabe, M., Maekawa, M. & Nishuda, E. Sef is a spatial regulator for Ras/MAP kinase signaling. Dev. Cell 7, 33–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Konarev, P.V., Petoukhov, M.V., Volkov, V.V. & Svergun, D.I. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 39, 277–286 (2006).

    Article  CAS  Google Scholar 

  49. Harvey, C.D. A genetically encoded fluorescent sensor of ERK activity. Proc. Natl. Acad. Sci. USA 105, 19264–19269 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ahmed, Z., Schüller, A.C., Suhling, K., Tregidgo, C. & Ladbury, J.E. Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signaling. Biochem. J. 413, 37–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Church, D.L., Guan, K.L. & Lambie, E.J. 3 Genes of the Map kinase cascade, Mek-2, Mpk-1/Sur-1 and Let-60 Ras, are required for meiotic cell-cycle progression in Caenorhabditis elegans. Development 121, 2525–2535 (1995).

    CAS  PubMed  Google Scholar 

  53. Eisenmann, D.M. & Kim, S.K. Mechanism of activation of the Caenorhabditis elegans ras homologue let-60 by a novel, temperature-sensitive, gain-of-function mutation. Genetics 146, 553–565 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lackner, M.R. & Kim, S.K. Genetic analysis of the Caenorhabditis elegans MAP kinase gene mpk-1. Genetics 150, 103–117 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hodgkin, J. Sex, cell death, and the genome of C. elegans. Cell 98, 277–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Arur, S. et al. Multiple ERK substrates execute single biological processes in Caenorhabdtis elegans germ-line development. Proc. Natl. Acad. Sci. USA 106, 4776–4781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Francis, R., Barton, M.K., Kimble, J. & Schedl, T. Gld-1, a tumor-suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139, 579–606 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones, A.R., Francis, R. & Schedl, T. GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev. Biol. 180, 165–183 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, M.H. et al. Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 177, 2039–2062 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.E.L. is funded by the G. Harold and Leila Y. Mathers Charitable Foundation and the University of Texas MD Anderson Cancer Center Trust. S.A. is funded through US National Institutes of Health GM98200. C. elegans strains were obtained through the Center for Caenorhabditis elegans consortium funded by the US National Institutes of Health National Center for Research Resources. We thank A. Radhakrishnan for the preparation of protein samples used in SAXS analysis and A.C. Schüller for assistance with western blots. MKN28 cells and MCF7 cells were kind gifts from R.M. Peek (Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA) and P.H. Brown (Department of Clinical Cancer Prevention, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA), respectively. We thank the Berkeley Laboratory Advanced Light Source and SIBYLS beamline staff at bl12.3.1 for assistance with collection of SAXS data.

Author information

Authors and Affiliations

Authors

Contributions

K.M.S., C.-C.L., R.G., F.A.M., E.R.B., Z.A. and S.T.A. carried out experiments and analyzed data. K.M.S., M.N.D. and S.A. performed the C. elegans experiments and analyzed the data. K.M.S., S.A., S.T.A. and J.E.L. conceived of the experiments and wrote the manuscript.

Corresponding author

Correspondence to John E Ladbury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1 and Supplementary Note (PDF 513 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suen, K., Lin, CC., George, R. et al. Interaction with Shc prevents aberrant Erk activation in the absence of extracellular stimuli. Nat Struct Mol Biol 20, 620–627 (2013). https://doi.org/10.1038/nsmb.2557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing