Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The structural basis for specific decoding of AUA by isoleucine tRNA on the ribosome

Abstract

Decoding of the AUA isoleucine codon in bacteria and archaea requires modification of a C in the anticodon wobble position of the isoleucine tRNA. Here, we report the crystal structure of the archaeal tRNA2Ile, which contains the modification agmatidine in its anticodon, in complex with the AUA codon on the 70S ribosome. The structure illustrates how agmatidine confers codon specificity for AUA over AUG.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decoding of the isoleucine AUA codon in prokaryotes.
Figure 2: The role of the agmatidine modification in decoding.
Figure 3: Predicted implications of this structure.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Ogle, J.M. et al. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  2. Nakamura, Y., Gojobori, T. & Ikemura, T. Nucleic Acids Res. 28, 292 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Nishimura, S. & Watanabe, K. J. Biosci. 31, 465–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Agris, P.F., Vendeix, F.A. & Graham, W.D. J. Mol. Biol. 366, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Yasukawa, T., Suzuki, T., Ishii, N., Ohta, S. & Watanabe, K. EMBO J. 20, 4794–4802 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Agris, P.F. Biochimie 73, 1345–1349 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Crick, F.H.C. J. Mol. Biol. 19, 548–555 (1966).

    Article  CAS  PubMed  Google Scholar 

  8. Yokoyama, S. & Nishimura, S. Modified nucleosides and codon recognition. in tRNA: Structure, biosynthesis and function (eds. Söll, D. & RajBhandary, U.L.) 207–223 (American Society for Microbiology Press, Washington, DC, 1995).

  9. Johansson, M.J., Esberg, A., Huang, B., Bjork, G.R. & Bystrom, A.S. Mol. Cell Biol. 28, 3301–3312 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Muramatsu, T. et al. J. Biol. Chem. 263, 9261–9267 (1988).

    CAS  PubMed  Google Scholar 

  11. Parker, J. Microbiol. Rev. 53, 273–298 (1989).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Schmeing, T.M., Voorhees, R.M., Kelley, A.C. & Ramakrishnan, V. Nat. Struct. Mol. Biol. 18, 432–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Muramatsu, T. et al. Nature 336, 179–181 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Soma, A. et al. Mol. Cell 12, 689–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Köhrer, C. et al. RNA 14, 117–126 (2008).

    Article  PubMed  Google Scholar 

  16. Ikeuchi, Y. et al. Nat. Chem. Biol. 6, 277–282 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Mandal, D. et al. Proc. Natl. Acad. Sci. USA 107, 2872–2877 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Grosjean, H., de Crecy-Lagard, V. & Marck, C. FEBS Lett. 584, 252–264 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Cell 111, 721–732 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Murphy, F.V.t., Ramakrishnan, V., Malkiewicz, A. & Agris, P.F. Nat. Struct. Mol. Biol. 11, 1186–1191 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Selmer, M. et al. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  22. Suzuki, T. & Suzuki, T. Methods Enzymol. 425, 231–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. McCarthy, A.A. et al. J. Synchrotron Radiat. 16, 803–812 (2009).

    Article  PubMed  Google Scholar 

  24. Kabsch, W. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  25. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  26. Brünger, A.T. et al. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. McCarthy and S. Brockhauser at European Synchrotron Radiation Facility ID14.4 for facilitating data collection. This work was supported by the Medical Research Council, UK, grant U105184332 (V.R.), the Wellcome Trust (V.R.), the Agouron Institute (V.R.) and the Louis-Jeantet Foundation (V.R.), and grant GM17151 from the US National Institutes of Health (U.L.R.). Support was also received from the Gates-Cambridge scholarship and Peterhouse (R.V.) and from Boehringer Ingelheim (C.N.).

Author information

Authors and Affiliations

Authors

Contributions

D.M. and C.K. purified tRNA substrates; R.M.V. and C.N. grew crystals, collected data, built and refined the structure, and analyzed the model; R.M.V., C.K., U.L.R. and V.R. wrote and edited the manuscript.

Corresponding authors

Correspondence to Uttam L RajBhandary or V Ramakrishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voorhees, R., Mandal, D., Neubauer, C. et al. The structural basis for specific decoding of AUA by isoleucine tRNA on the ribosome. Nat Struct Mol Biol 20, 641–643 (2013). https://doi.org/10.1038/nsmb.2545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing