Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay

Subjects

Abstract

Staufen1 (STAU1)-mediated mRNA decay (SMD) degrades mammalian-cell mRNAs that bind the double-stranded RNA (dsRNA)-binding protein STAU1 in their 3′ untranslated region. We report a new motif, which typifies STAU homologs from all vertebrate classes, that is responsible for human STAU1 (hSTAU1) homodimerization. Our crystal structure and mutagenesis analyses reveal that this motif, which we named the Staufen-swapping motif (SSM), and the dsRNA-binding domain 5 ('RBD'5) mediate protein dimerization: the two SSM α-helices of one molecule interact primarily through a hydrophobic patch with the two 'RBD'5 α-helices of a second molecule. 'RBD'5 adopts the canonical α-β-β-β-α fold of a functional RBD, but it lacks residues and features required to bind duplex RNA. In cells, SSM-mediated hSTAU1 dimerization increases the efficiency of SMD by augmenting hSTAU1 binding to the ATP-dependent RNA helicase hUPF1. Dimerization regulates keratinocyte-mediated wound healing and many other cellular processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of vertebrate STAU sequences, and the X-ray crystal structure of hSTAU1 SSM-'RBD'5.
Figure 2: Comparison of hSTAU155 'RBD'5 with an RBD that binds dsRNA.
Figure 3: hSTAU155 SSM-'RBD'5 is a dimer in solution.
Figure 4: 'RBD'5 and SSM interact in trans, and expression of either one inhibits hSTAU1 dimerization and SMD.
Figure 5: Sequences C-terminal to 'RBD'5 α1 are not required for hSTAU155 dimerization, and dimerization promotes hUPF1 binding and SMD.
Figure 6: hSTAU155 point mutations that disrupt dimerization inhibit hUPF1 binding and SMD, thereby precluding contributions of SMD toward inhibiting cell motility.
Figure 7: Model for how hSTAU1 dimers recruit hUPF1 to the 3′ UTR of an mRNA that is targeted for SMD and promote its decay.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Gautrey, H., McConnell, J., Lako, M., Hall, J. & Hesketh, J. Staufen1 is expressed in preimplantation mouse embryos and is required for embryonic stem cell differentiation. Biochim. Biophys. Acta 1783, 1935–1942 (2008).

    Article  CAS  Google Scholar 

  2. Martel, C., Macchi, P., Furic, L., Kiebler, M.A. & DesGroseillers, L. Staufen1 is imported into the nucleolus via a bipartite nuclear localization signal and several modulatory determinants. Biochem. J. 393, 245–254 (2006).

    Article  CAS  Google Scholar 

  3. Miki, T., Takano, K. & Yoneda, Y. The role of mammalian Staufen on mRNA traffic: a view from its nucleocytoplasmic shuttling function. Cell Struct. Funct. 30, 51–56 (2005).

    Article  CAS  Google Scholar 

  4. Dugré -Brisson, S et al. Interaction of Staufen1 with the 5′ end of mRNA facilitates translation of these RNAs. Nucleic Acids Res. 33, 4797–4812 (2005).

    Article  Google Scholar 

  5. Chatel-Chaix, L., Abrahamyan, L., Frechina, C., Mouland, A.J. & DesGroseillers, L. The host protein Staufen1 participates in human immunodeficiency virus type 1 assembly in live cells by influencing pr55Gag multimerization. J. Virol. 81, 6216–6230 (2007).

    Article  CAS  Google Scholar 

  6. Chatel-Chaix, L., Boulay, K., Mouland, A.J. & DesGroseillers, L. The host protein Staufen1 interacts with the Pr55Gag zinc fingers and regulates HIV-1 assembly via its N-terminus. Retrovirology 5, 41 (2008).

    Article  Google Scholar 

  7. Gong, C., Kim, Y.K., Woeller, C.F., Tang, Y. & Maquat, L.E. SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev. 23, 54–66 (2009).

    Article  CAS  Google Scholar 

  8. Kim, Y.K., Furic, L., DesGroseillers, L. & Maquat, L.E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).

    Article  CAS  Google Scholar 

  9. Kim, Y.K. et al. Staufen1 regulates diverse classes of mammalian transcripts. EMBO J. 26, 2670–2681 (2007).

    Article  CAS  Google Scholar 

  10. Gong, C. & Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011).

    Article  CAS  Google Scholar 

  11. Cho, H. et al. Staufen1-mediated mRNA decay functions in adipogenesis. Mol. Cell 46, 495–506 (2012).

    Article  CAS  Google Scholar 

  12. Maquat, L.E. & Gong, C. Gene expression networks: competing mRNA decay pathways in mammalian cells. Biochem. Soc. Trans. 37, 1287–1292 (2009).

    Article  CAS  Google Scholar 

  13. Micklem, D.R., Adams, J., Grunert, S. & St Johnston, D. Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J. 19, 1366–1377 (2000).

    Article  CAS  Google Scholar 

  14. St Johnston, D., Brown, N.H., Gall, J.G. & Jantsch, M. A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA 89, 10979–10983 (1992).

    Article  CAS  Google Scholar 

  15. Wickham, L., Duchaîne, T., Luo, M., Nabi, I.R. & DesGroseillers, L. Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Mol. Cell Biol. 19, 2220–2230 (1999).

    Article  CAS  Google Scholar 

  16. Duchaîne, T. et al. A novel murine Staufen isoform modulates the RNA content of Staufen complexes. Mol. Cell Biol. 20, 5592–5601 (2000).

    Article  Google Scholar 

  17. Luo, M., Duchaîne, T.F. & DesGroseillers, L. Molecular mapping of the determinants involved in human Staufen-ribosome association. Biochem. J. 365, 817–824 (2002).

    Article  CAS  Google Scholar 

  18. Allison, R. et al. Two distinct Staufen isoforms in Xenopus are vegetally localized during oogenesis. RNA 10, 1751–1763 (2004).

    Article  CAS  Google Scholar 

  19. Duchaîne, T.F. et al. Staufen2 isoforms localize to the somatodendritic domain of neurons and interact with different organelles. J. Cell Sci. 115, 3285–3295 (2002).

    PubMed  Google Scholar 

  20. Park, E., Gleghorn, M.L. & Maquat, L.E. Staufen2, like Staufen1, functions in SMD by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity. Proc. Natl. Acad. Sci. USA 110, 405–412 (2013).

    Article  CAS  Google Scholar 

  21. Furic, L., Maher-Laporte, M. & DesGroseillers, L. A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes. RNA 14, 324–335 (2008).

    Article  CAS  Google Scholar 

  22. Ramos, A. et al. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J. 19, 997–1009 (2000).

    Article  CAS  Google Scholar 

  23. Tian, B., Bevilacqua, P.C., Diegelman-Parente, A. & Mathews, M.B. The double-stranded-RNA–binding motif: interference and much more. Nat. Rev. Mol. Cell Biol. 5, 1013–1023 (2004).

    Article  CAS  Google Scholar 

  24. Stefl, R. et al. The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell 143, 225–237 (2010).

    Article  CAS  Google Scholar 

  25. Martel, C. et al. Multimerization of Staufen1 in live cells. RNA 16, 585–597 (2010).

    Article  CAS  Google Scholar 

  26. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  27. Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).

    Article  CAS  Google Scholar 

  28. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  29. Gan, J. et al. A stepwise model for double-stranded RNA processing by ribonuclease III. Mol. Microbiol. 67, 143–154 (2008).

    Article  CAS  Google Scholar 

  30. Buchan, D.W. et al. Protein annotation and modelling servers at University College London. Nucleic Acids Res. 38, W563–W568 (2010).

    Article  CAS  Google Scholar 

  31. Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  Google Scholar 

  32. Gong, C. & Maquat, L.E. “Alu”strious long ncRNAs and their role in shortening mRNA half-lives. Cell Cycle 10, 1882–1883 (2011).

    Article  CAS  Google Scholar 

  33. Ravel-Chapuis, A. et al. The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing. J. Cell Biol. 196, 699–712 (2012).

    Article  CAS  Google Scholar 

  34. Amoutzias, G.D., Robertson, D.L., Van de Peer, Y. & Oliver, S.G. Choose your partners: dimerization in eukaryotic transcription factors. Trends Biochem. Sci. 33, 220–229 (2008).

    Article  CAS  Google Scholar 

  35. Cho, D.S. et al. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J. Biol. Chem. 278, 17093–17102 (2003).

    Article  CAS  Google Scholar 

  36. Valente, L. & Nishikura, K. RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J. Biol. Chem. 282, 16054–16061 (2007).

    Article  CAS  Google Scholar 

  37. Cole, J.L. Activation of PKR: an open and shut case? Trends Biochem. Sci. 32, 57–62 (2007).

    Article  CAS  Google Scholar 

  38. Barraud, P. et al. An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer. EMBO J. 30, 4223–4235 (2011).

    Article  CAS  Google Scholar 

  39. Fuerstenberg, S., Peng, C.Y., Alvarez-Ortiz, P., Hor, T. & Doe, C.Q. Identification of Miranda protein domains regulating asymmetric cortical localization, cargo binding, and cortical release. Mol. Cell Neurosci. 12, 325–339 (1998).

    Article  CAS  Google Scholar 

  40. Schuldt, A.J. et al. Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev. 12, 1847–1857 (1998).

    Article  CAS  Google Scholar 

  41. Haase, A.D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967 (2005).

    Article  CAS  Google Scholar 

  42. Parker, G.S., Maity, T.S. & Bass, B.L. dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi. J. Mol. Biol. 384, 967–979 (2008).

    Article  CAS  Google Scholar 

  43. Hitti, E.G., Sallacz, N.B., Schoft, V.K. & Jantsch, M.F. Oligomerization activity of a double-stranded RNA-binding domain. FEBS Lett. 574, 25–30 (2004).

    Article  CAS  Google Scholar 

  44. Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41, 95–98 (1999).

    CAS  Google Scholar 

  45. Philo, J.S. A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. Anal. Biochem. 279, 151–163 (2000).

    Article  CAS  Google Scholar 

  46. Philo, J.S. Improved methods for fitting sedimentation coefficient distributions derived by time-derivative techniques. Anal. Biochem. 354, 238–246 (2006).

    Article  CAS  Google Scholar 

  47. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  Google Scholar 

  48. Stafford, W.F. & Sherwood, P.J. Analysis of heterologous interacting systems by sedimentation velocity: curve fitting algorithms for estimation of sedimentation coefficients, equilibrium and kinetic constants. Biophys. Chem. 108, 231–243 (2004).

    Article  CAS  Google Scholar 

  49. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Kuzmiak (University of Rochester) for generating pSTAU155(R)-HA3; L. DesGroseillers (Université de Montréal) for pSTAU155-HA3; K. Nehrke for microscope use; G. Pavlencheva and C. Hull for technical assistance; R. Singer (Albert Einstein College of Medicine) for pmRFP; S. de Lucas and J. Ortín (Centro Nacional de Biotecnología) for anti-STAU1; and J. Lary (University of Connecticut Analytical Ultracentrifugation Facility), J. Jenkins, J. Wedekind and M. Popp for helpful conversations. This work was made possible by US National Institutes of Health (NIH) grant NIH R01 GM074593 to L.E.M. M.L.G. was supported by a Ruth L. Kirschstein National Research Service Award (NRSA) NIHF32 GM090479 Fellowship and grant NIH NCI T32 CA09363. C.G. was supported by a Messersmith Graduate Student Fellowship. The University of Rochester Medical Center Structural Biology and Biophysics Facility is supported by NIH National Center for Research Resources (NCRR) grants 1S10 RR026501 and 1S10 RR027241, NIH National Institute of Allergy and Infectious Diseases (NIAID) grant P30 AI078498 and the University of Rochester School of Medicine and Dentistry. The Cornell High Energy Synchrotron Source (CHESS) is supported by the National Science Foundation (NSF) and NIH National Institute of General Medicine Sciences (NIGMS) through NSF award DMR-0225180. Macromolecular Diffraction at CHESS (MacCHESS) is supported by NIH NCRR RR-01646. The Stanford Synchrotron Radiation Lightsource (SSRL) Structural Molecular Biology Program is supported by the Department of Energy Office of Biological and Environmental Research, the NIH National Center for Research Resources Biomedical Technology Program (P41RR001209) and the NIGMS.

Author information

Authors and Affiliations

Authors

Contributions

M.L.G. and L.E.M. conceived the project and wrote the manuscript with input from C.L.K. Experiments were designed by M.L.G., C.G. and L.E.M. M.L.G. carried out the structural work with input from C.L.K., and designed and constructed the plasmids needed for this study. C.G. undertook experiments using cultured cells. All authors contributed to data interpretation.

Corresponding author

Correspondence to Lynne E Maquat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2 and Supplementary Notes 1–3 (PDF 2245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleghorn, M., Gong, C., Kielkopf, C. et al. Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay. Nat Struct Mol Biol 20, 515–524 (2013). https://doi.org/10.1038/nsmb.2528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing