Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of prion-like conformational changes of the neuronal isoform of Aplysia CPEB

Abstract

The neuronal isoform of cytoplasmic polyadenylation element–binding protein (CPEB) is a regulator of local protein synthesis at synapses and is critical in maintaining learning-related synaptic plasticity in Aplysia. Previous studies indicate that the function of Aplysia CPEB can be modulated by conversion to a stable prion-like state, thus contributing to the stabilization of long-term memory on a molecular level. Here, we used biophysical methods to demonstrate that Aplysia CPEB, like other prions, undergoes a conformational switch from soluble α-helix–rich oligomer to β-sheet–rich fiber in vitro. Solid-state NMR analyses of the fibers indicated a relatively rigid N-terminal prion domain. The fiber form of Aplysia CPEB showed enhanced binding to target mRNAs as compared to the soluble form. Consequently, we propose a model for the Aplysia CPEB fibers that may have relevance for functional prions in general.

Although significant knowledge of cellular and molecular mechanisms underlying the acquisition and early storage of implicit and explicit long-term memory has been gained, the mechanisms by which memories are maintained for long periods of time are still not fully understood1,2. Because proteins normally have relatively short half-lives, of hours or days, the question remains: How can the change in molecular composition of a synapse be maintained for long periods of time, as is required for long-term memory? We previously found one answer to this conundrum in a work describing a prion-like regulator of local protein synthesis at the synapse in the marine snail Aplysia californica: the cytoplasmic polyadenylation element–binding protein Aplysia CPEB3,4. This provided physiological evidence that the prion-like properties of Aplysia CPEB might explain the self-sustained, continuous molecular turnover at the synapse5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the neuronal isoform of Aplysia CPEB.
Figure 2: The soluble form of Aplysia CPEB exists as oligomers in Aplysia neurons and in E. coli expressing Aplysia CPEB.
Figure 3: RNA-binding assay.
Figure 4: Secondary-structure analysis of two conformational forms of full-length Aplysia CPEB.
Figure 5: X-ray powder diffraction analyses of Aplysia CPEB fibers.
Figure 6: 1D solid-state NMR spectra of the fiber form of full-length Aplysia CPEB and the isolated prion domain, indicating dynamic RNA-binding domains and static prion domains.
Figure 7: 2D solid-state NMR spectra on the N-terminal prion-like domain of Aplysia CPEB.

Similar content being viewed by others

References

  1. Bailey, C.H., Kandel, E.R. & Si, K. The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth. Neuron Medline 44, 49–57 (2004).

    Article  CAS  Google Scholar 

  2. Bailey, C.H. & Kandel, E.R. Synaptic remodeling, synaptic growth and the storage of long-term memory in Aplysia. Prog. Brain Res. 169, 179–198 (2008).

    Article  CAS  Google Scholar 

  3. Si, K., Lindquist, S. & Kandel, E.R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003).

    Article  CAS  Google Scholar 

  4. Si, K. et al. A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in Aplysia. Cell 115, 893–904 (2003).

    Article  CAS  Google Scholar 

  5. Si, K., Choi, Y.B., White-Grindley, E., Majumdar, A. & Kandel, E.R. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell Medline 140, 421–435 (2010).

    Article  CAS  Google Scholar 

  6. McGrew, L.L., Dworkin-Rastl, E., Dworkin, M.B. & Richter, J.D. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 3, 803–815 (1989).

    Article  CAS  Google Scholar 

  7. Gebauer, F. & Richter, J.D. Mouse cytoplasmic polyadenylylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylylation elements of c-mos mRNA. Proc. Natl. Acad. Sci. USA 93, 14602–14607 (1996).

    Article  CAS  Google Scholar 

  8. Liu, J. & Schwartz, J.H. The cytoplasmic polyadenylation element binding protein and polyadenylation of messenger RNA in Aplysia neurons. Brain Res. 959, 68–76 (2003).

    Article  CAS  Google Scholar 

  9. DePace, A.H., Santoso, A., Hillner, P. & Weissman, J.S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998).

    Article  CAS  Google Scholar 

  10. Glover, J.R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997).

    Article  CAS  Google Scholar 

  11. Wickner, R.B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994).

    Article  CAS  Google Scholar 

  12. Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000).

    Article  CAS  Google Scholar 

  13. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  Google Scholar 

  14. Harrison, P.M., Bamborough, P., Daggett, V., Prusiner, S.B. & Cohen, F.E. The prion folding problem. Curr. Opin. Struct. Biol. 7, 53–59 (1997).

    Article  CAS  Google Scholar 

  15. Heinrich, S.U. & Lindquist, S. Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB). Proc. Natl. Acad. Sci. USA 108, 2999–3004 (2011).

    Article  CAS  Google Scholar 

  16. Majumdar, A. et al. Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148, 515–529 (2012).

    Article  CAS  Google Scholar 

  17. Pavlopoulos, E. et al. Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 147, 1369–1383 (2011).

    Article  CAS  Google Scholar 

  18. Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 6, 337–345 (1999).

    Article  CAS  Google Scholar 

  19. Wacker, J.L., Zareie, M.H., Fong, H., Sarikaya, M. & Muchowski, P.J. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat. Struct. Mol. Biol. 11, 1215–1222 (2004).

    Article  CAS  Google Scholar 

  20. Lobley, A., Whitmore, L. & Wallace, B.A. DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18, 211–212 (2002).

    Article  CAS  Google Scholar 

  21. Whitmore, L. & Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 (2004).

    Article  CAS  Google Scholar 

  22. Zandomeneghi, G., Krebs, M.R., McCammon, M.G. & Fandrich, M. FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Sci. 13, 3314–3321 (2004).

    Article  CAS  Google Scholar 

  23. LeVine, H. III. Thioflavine T interaction with synthetic Alzheimer′s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2, 404–410 (1993).

    Article  CAS  Google Scholar 

  24. Wickner, R.B., Dyda, F. & Tycko, R. Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register β-sheet structure. Proc. Natl. Acad. Sci. USA 105, 2403–2408 (2008).

    Article  CAS  Google Scholar 

  25. Shewmaker, F. et al. The functional curli amyloid is not based on in-register parallel β-sheet structure. J. Biol. Chem. 284, 25065–25076 (2009).

    Article  CAS  Google Scholar 

  26. Jabet, C., Sprague, E.R., VanDemark, A.P. & Wolberger, C. Characterization of the N-terminal domain of the yeast transcriptional repressor Tup1. Proposal for an association model of the repressor complex Tup1 x Ssn6. J. Biol. Chem. 275, 9011–9018 (2000).

    Article  CAS  Google Scholar 

  27. Dueholm, M.S. et al. Functional amyloid in Pseudomonas. Mol. Microbiol. Medline 77, 1009–1020 (2010).

    CAS  Google Scholar 

  28. Fowler, D.M. et al. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6 (2006).

    Article  Google Scholar 

  29. Maji, S.K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009).

    Article  CAS  Google Scholar 

  30. Barnhart, M.M. & Chapman, M.R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    Article  CAS  Google Scholar 

  31. Pines, A., Gibby, M.G. & Waugh, J.S. Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569–590 (1973).

    Article  CAS  Google Scholar 

  32. Burum, D.P. & Ernst, R.R. Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei. J. Magn. Reson. 39, 163–168 (1980).

    CAS  Google Scholar 

  33. Levitt, M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley, 2001).

  34. Siemer, A.B. et al. Observation of highly flexible residues in amyloid fibrils of the HET-s prion. J. Am. Chem. Soc. 128, 13224–13228 (2006).

    Article  CAS  Google Scholar 

  35. Helmus, J.J., Surewicz, K., Nadaud, P.S., Surewicz, W.K. & Jaroniec, C.P. Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils. Proc. Natl. Acad. Sci. USA 105, 6284–6289 (2008).

    Article  CAS  Google Scholar 

  36. Loquet, A. et al. Prion fibrils of Ure2p assembled under physiological conditions contain highly ordered, natively folded modules. J. Mol. Biol. 394, 108–118 (2009).

    Article  CAS  Google Scholar 

  37. Hu, K.N., McGlinchey, R.P., Wickner, R.B. & Tycko, R. Segmental polymorphism in a functional amyloid. Biophys. J. 101, 2242–2250 (2011).

    Article  CAS  Google Scholar 

  38. Spera, S., Ikura, M. & Bax, A. Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J. Biomol. NMR 1, 155–165 (1991).

    Article  CAS  Google Scholar 

  39. Bax, A. & Freeman, R. Investigation of complex networks of spin-spin coupling by two-dimensional NMR. J. Magn. Reson. 44, 542–561 (1981).

    CAS  Google Scholar 

  40. Helmus, J.J., Surewicz, K., Surewicz, W.K. & Jaroniec, C.P. Conformational flexibility of Y145Stop human prion protein amyloid fibrils probed by solid-state nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 132, 2393–2403 (2010).

    Article  CAS  Google Scholar 

  41. Ritter, C. et al. Correlation of structural elements and infectivity of the HET-s prion. Nature 435, 844–848 (2005).

    Article  CAS  Google Scholar 

  42. Fiumara, F., Fioriti, L., Kandel, E.R. & Hendrickson, W.A. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and polyQ proteins. Cell Medline 143, 1121–1135 (2010).

    Article  CAS  Google Scholar 

  43. Sambashivan, S., Liu, Y., Sawaya, M.R., Gingery, M. & Eisenberg, D. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437, 266–269 (2005).

    Article  CAS  Google Scholar 

  44. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  45. Puthanveettil, S.V. et al. A new component in synaptic plasticity: upregulation of kinesin in the neurons of the gill-withdrawal reflex. Cell 135, 960–973 (2008).

    Article  CAS  Google Scholar 

  46. Marley, J., Lu, M. & Bracken, C. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75 (2001).

    Article  CAS  Google Scholar 

  47. Siemer, A.B. & McDermott, A.E. Solid-state NMR on a type III antifreeze protein in the presence of ice. J. Am. Chem. Soc. 130, 17394–17399 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to K. Si (Stowers Institute for Medical Research, Kansas City, Missouri, USA) for providing the plasmids used in this study and to S. Jokusch (Columbia University) for helping us with FTIR spectra and real-time fluorescence measurement. We would like to acknowledge and thank J. Lidestri, (Columbia University) and H. Park (Scripps Research Institute) for assisting with X-ray diffraction analyses of the fibers. We are grateful to K. Nakanishi and N. Berova (Columbia University) for their guidance in CD analysis and to M.A. Gawinowicz (Columbia University) for MS analysis of the protein fragments. This work was supported by the Howard Hughes Medical Institute, US National Institutes of Health (grant MH075026; E.R.K.) and US National Science Foundation (grant MCB0316248; A.E.M.).

Author information

Authors and Affiliations

Authors

Contributions

B.L.R., S.V.P. and A.B.S. designed the project after discussing with E.R.K., A.E.M. and W.A.H. All the experiments were done by B.L.R. except NMR and RNA-binding experiments. NMR experiments were done by A.B.S. and RNA-binding experiments by S.V.P. B.L.R., A.B.S., E.R.K. and A.E.M. wrote the paper.

Corresponding authors

Correspondence to Eric R Kandel or Ann E McDermott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1935 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raveendra, B., Siemer, A., Puthanveettil, S. et al. Characterization of prion-like conformational changes of the neuronal isoform of Aplysia CPEB. Nat Struct Mol Biol 20, 495–501 (2013). https://doi.org/10.1038/nsmb.2503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing