Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding

Abstract

The choice of codons can influence local translation kinetics during protein synthesis. Whether codon preference is linked to cotranslational regulation of polypeptide folding remains unclear. Here, we derive a revised translational efficiency scale that incorporates the competition between tRNA supply and demand. Applying this scale to ten closely related yeast species, we uncover the evolutionary conservation of codon optimality in eukaryotes. This analysis reveals universal patterns of conserved optimal and nonoptimal codons, often in clusters, which associate with the secondary structure of the translated polypeptides independent of the levels of expression. Our analysis suggests an evolved function for codon optimality in regulating the rhythm of elongation to facilitate cotranslational polypeptide folding, beyond its previously proposed role of adapting to the cost of expression. These findings establish how mRNA sequences are generally under selection to optimize the cotranslational folding of corresponding polypeptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A normalized translational efficiency scale that balances tRNA supply and demand.
Figure 2: A conserved short dip of low translational efficiency at the beginning of mRNAs.
Figure 3: Site-specific evolutionary conservation of codon optimality.
Figure 4: Conserved codon optimality associates with signatures of cotranslational folding.
Figure 5: Conserved codon optimality maps onto known protein structures.
Figure 6: Optimal and nonoptimal codons in protein synthesis and cotranslational folding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gingold, H. & Pilpel, Y. Determinants of translation efficiency and accuracy. Mol. Syst. Biol. 7, 481 (2011).

    Article  Google Scholar 

  2. Akashi, H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136, 927–935 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Drummond, D.A. & Wilke, C.O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341–352 (2008).

    Article  CAS  Google Scholar 

  4. Cabrita, L.D., Dobson, C.M. & Christodoulou, J. Protein folding on the ribosome. Curr. Opin. Struct. Biol. 20, 33–45 (2010).

    Article  CAS  Google Scholar 

  5. Thanaraj, T.A. & Argos, P. Ribosome-mediated translational pause and protein domain organization. Protein Sci. 5, 1594–1612 (1996).

    Article  CAS  Google Scholar 

  6. Zhang, F., Saha, S., Shabalina, S.A. & Kashina, A. Differential arginylation of actin isoforms is regulated by coding sequence–dependent degradation. Science 329, 1534–1537 (2010).

    Article  CAS  Google Scholar 

  7. Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16, 274–280 (2009).

    Article  CAS  Google Scholar 

  8. Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).

    Article  CAS  Google Scholar 

  9. Plotkin, J.B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

    Article  CAS  Google Scholar 

  10. Kramer, G., Boehringer, D., Ban, N. & Bukau, B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16, 589–597 (2009).

    Article  CAS  Google Scholar 

  11. Wilson, D.N. & Beckmann, R. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21, 274–282 (2011).

    Article  CAS  Google Scholar 

  12. Komar, A.A. A pause for thought along the co-translational folding pathway. Trends Biochem. Sci. 34, 16–24 (2009).

    Article  CAS  Google Scholar 

  13. Warnecke, T. & Hurst, L.D. GroEL dependency affects codon usage–support for a critical role of misfolding in gene evolution. Mol. Syst. Biol. 6, 340 (2010).

    Article  Google Scholar 

  14. Brunak, S. & Engelbrecht, J. Protein structure and the sequential structure of mRNA: α-helix and β-sheet signals at the nucleotide level. Proteins 25, 237–252 (1996).

    Article  CAS  Google Scholar 

  15. Saunders, R. & Deane, C.M. Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res. 38, 6719–6728 (2010).

    Article  CAS  Google Scholar 

  16. Gupta, S.K., Majumdar, S., Bhattacharya, T.K. & Ghosh, T.C. Studies on the relationships between the synonymous codon usage and protein secondary structural units. Biochem. Biophys. Res. Commun. 269, 692–696 (2000).

    Article  CAS  Google Scholar 

  17. Petrov, A. et al. Dynamics of the translational machinery. Curr. Opin. Struct. Biol. 21, 137–145 (2011).

    Article  CAS  Google Scholar 

  18. Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344–354 (2010).

    Article  CAS  Google Scholar 

  19. dos Reis, M., Savva, R. & Wernisch, L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 32, 5036–5044 (2004).

    Article  CAS  Google Scholar 

  20. Zhou, T., Weems, M. & Wilke, C.O. Translationally optimal codons associate with structurally sensitive sites in proteins. Mol. Biol. Evol. 26, 1571–1580 (2009).

    Article  CAS  Google Scholar 

  21. Zhang, G. et al. Global and local depletion of ternary complex limits translation elongation. Nucleic Acids Res. 38, 4778–4787 (2010).

    Article  CAS  Google Scholar 

  22. Man, O. & Pilpel, Y. Differential translation efficiency of orthologous genes is involved in phenotypic divergence of yeast species. Nat. Genet. 39, 415–421 (2007).

    Article  CAS  Google Scholar 

  23. Fraser, H.B., Moses, A.M. & Schadt, E.E. Evidence for widespread adaptive evolution of gene expression in budding yeast. Proc. Natl. Acad. Sci. USA 107, 2977–2982 (2010).

    Article  CAS  Google Scholar 

  24. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R. & Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  Google Scholar 

  25. Reumers, J., Maurer-Stroh, S., Schymkowitz, J. & Rousseau, F. Protein sequences encode safeguards against aggregation. Hum. Mutat. 30, 431–437 (2009).

    Article  CAS  Google Scholar 

  26. Lee, Y., Zhou, T., Tartaglia, G.G., Vendruscolo, M. & Wilke, C.O. Translationally optimal codons associate with aggregation-prone sites in proteins. Proteomics 10, 4163–4171 (2010).

    Article  CAS  Google Scholar 

  27. Berndt, U., Oellerer, S., Zhang, Y., Johnson, A.E. & Rospert, S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl. Acad. Sci. USA 106, 1398–1403 (2009).

    Article  CAS  Google Scholar 

  28. Lin, P.J., Jongsma, C.G., Pool, M.R. & Johnson, A.E. Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon. J. Cell Biol. 195, 55–70 (2011).

    Article  CAS  Google Scholar 

  29. Shah, P. & Gilchrist, M.A. Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift. Proc. Natl. Acad. Sci. USA 108, 10231–10236 (2011).

    Article  CAS  Google Scholar 

  30. Drummond, D.A., Bloom, J.D., Adami, C., Wilke, C.O. & Arnold, F.H. Why highly expressed proteins evolve slowly. Proc. Natl. Acad. Sci. USA 102, 14338–14343 (2005).

    Article  CAS  Google Scholar 

  31. De Sancho, D. & Best, R.B. What is the time scale for α-helix nucleation? J. Am. Chem. Soc. 133, 6809–6816 (2011).

    Article  CAS  Google Scholar 

  32. O'Brien, E.P., Hsu, S.T., Christodoulou, J., Vendruscolo, M. & Dobson, C.M. Transient tertiary structure formation within the ribosome exit port. J. Am. Chem. Soc. 132, 16928–16937 (2010).

    Article  CAS  Google Scholar 

  33. Lu, J. & Deutsch, C. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12, 1123–1129 (2005).

    Article  CAS  Google Scholar 

  34. Lucent, D., Snow, C.D., Aitken, C.E. & Pande, V.S. Non-bulk-like solvent behavior in the ribosome exit tunnel. PLoS Comput. Biol. 6, e1000963 (2010).

    Article  Google Scholar 

  35. Qu, X. et al. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475, 118–121 (2011).

    Article  CAS  Google Scholar 

  36. Takyar, S., Hickerson, R.P. & Noller, H.F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).

    Article  CAS  Google Scholar 

  37. Cannarozzi, G. et al. A role for codon order in translation dynamics. Cell 141, 355–367 (2010).

    Article  Google Scholar 

  38. Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006).

    Article  CAS  Google Scholar 

  39. Elf, J., Nilsson, D., Tenson, T. & Ehrenberg, M. Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300, 1718–1722 (2003).

    Article  CAS  Google Scholar 

  40. Wapinski, I., Pfeffer, A., Friedman, N. & Regev, A. Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007).

    Article  CAS  Google Scholar 

  41. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  42. Lowe, T.M. & Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  Google Scholar 

  43. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  Google Scholar 

  44. Chen, D. et al. Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell 14, 214–229 (2003).

    Article  CAS  Google Scholar 

  45. Tsankov, A.M., Thompson, D.A., Socha, A., Regev, A. & Rando, O.J. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol. 8, e1000414 (2010).

    Article  Google Scholar 

  46. Tóth-Petróczy, A. & Tawfik, D.S. Slow protein evolutionary rates are dictated by surface-core association. Proc. Natl. Acad. Sci. USA 108, 11151–11156 (2011).

    Article  Google Scholar 

  47. Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  Google Scholar 

  48. Hofacker, I.L., Priwitzer, B. & Stadler, P.F. Prediction of locally stable RNA secondary structures for genome-wide surveys. Bioinformatics 20, 186–190 (2004).

    Article  CAS  Google Scholar 

  49. Joosten, R.P. et al. A series of PDB related databases for everyday needs. Nucleic Acids Res. 39, D411–D419 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Frydman lab for helpful discussions. We gratefully acknowledge support from an European Molecular Biology Organization Long-Term Fellowship (ALTF 1334-2010) to S.P. and US National Institutes of Health grants GM56433 and AI91575 to J.F.

Author information

Authors and Affiliations

Authors

Contributions

S.P. performed all analyses; S.P. and J.F. designed research, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Judith Frydman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–8 (PDF 2092 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pechmann, S., Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat Struct Mol Biol 20, 237–243 (2013). https://doi.org/10.1038/nsmb.2466

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing