Journal home
Advance online publication
Current issue
Archive
Press releases
Supplements
Focus
Guide to authors
Online submissionOnline submission
Permissions
For referees
Free online issue
Contact the journal
Subscribe
Advertising
work@npg
naturereprints
About this site
For librarians
 
Nature Research Resources
Nature
Nature Cell Biology
Nature Reviews Molecular Cell Biology
The EMBO Journal
Nature Reports Avian Flu
NPG Subject areas
Biotechnology
Cancer
Chemistry
Clinical Medicine
Dentistry
Development
Drug Discovery
Earth Sciences
Evolution & Ecology
Genetics
Immunology
Materials Science
Medical Research
Microbiology
Molecular Cell Biology
Neuroscience
Pharmacology
Physics
Browse all publications
Article
Nature Structural Biology  2, 274 - 280 (1995)
doi:10.1038/nsb0495-274

Flexibility and function in HIV-1 protease

Linda K. Nicholson1, Toshimasa Yamazaki1, Dennis A. Torchia1, Stephan Grzesiek2, Ad Bax2, Stephen J. Stahl3, Joshua D. Kaufman3, Paul T. Wingfield3, Patrick Y.S Lam4, Prabhakar K. Jadhav4, C. Nicholas Hodge4, Peter J. Domaille4 & Chong-Hwan Chang4

  1Molecular Structural Biology Unit, National Institute of Dental Research, Bethesda, Maryland 20892 USA

  2Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892 USA

  3Protein Expression Laboratory, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892 USA

  4Department of Chemical and Physical Sciences, The DuPont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0400 USA

HIV protease is a homodimeric protein whose activity is essential to viral function. We have investigated the molecular dynamics of the HIV protease, thought to be important for proteinase function, bound to high affinity inhibitors using NMR techniques. Analysis of 15N spin relaxation parameters, of all but 13 backbone amide sites, reveals the presence of significant internal motions of the protein backbone. In particular, the flaps that cover the proteins active site of the protein have terminal loops that undergo large amplitude motions on the ps to ns time scale, while the tips of the flaps undergo a conformational exchange on the mus time scale. This enforces the idea that the flaps of the proteinase are flexible structures that facilitate function by permitting substrate access to and product release from the active site of the enzyme.

REFERENCES
  1. Kohl, N.E. et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc. natn. Acad. Sci. U.S.A. 85, 4686−4690 (1988). | ChemPort |
  2. Seelmeier, S., Schmidt, H., Turk, V. & von der Helm, K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin-A. Proc. natn. Acad. Sci. U.S.A. 85, 6612−6616 (1988). | ChemPort |
  3. Wlodawer, A. & Erickson, J.W. Structure-based inhibitors of HIV-1 protease. A. Rev. Biochem. 62, 543−585 (1993). | Article | ISI | ChemPort |
  4. Lam, P.Y.-S., et al. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 263, 380−384 (1994). | PubMed | ISI | ChemPort |
  5. Grzesiek, S. et al. NMR evidence for the displacement of a conserved interior water molecule in HIV protease by a non-peptide cyclic urea-based inhibitor. J. A. chem. Soc. 116, 1581−1582 (1994). | ISI | ChemPort |
  6. Jadhav, P.K. & Woemer, F.J. Synthesis of C2-symmetrical HIV-1 protease inhibitors from D-mannitol. Bioorg. med. Chem. Letts. 2, 353 (1992). | Article | ChemPort |
  7. Harte, W.E. Jr, et al. Domain communication in the dynamics structure of human immunodeficiency virus-1 protease. Proc. natn. Acad. Sci. U.S.A. 87, 8864−8868 (1990). | ChemPort |
  8. Venable, R.M., Brooks, B.R. & Carson, F.W. Theoretical studies of relaxation of a monomeric subunit of HIV-1 protease in water using molecular-dynamics. Proteins Struct. Funct. Genet. 15, 374−384 (1993). | PubMed | ISI | ChemPort |
  9. Abragam, A. The Principles of Nuclear Magnetism (Oxford University Press, Oxford, U.K.; 1961).
  10. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972−8979 (1989). | PubMed | ISI | ChemPort |
  11. Boyd, J., Hommel, U. & Campbell, I.D. Influence of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanism upon longitudinal relaxation rates of 15N in macromolecules. J. chem. Phys. 175, 477−482 (1990). | Article | ChemPort |
  12. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. & Torchia, D.A. Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J. magn. Reson. 97, 359−375 (1992). | ISI | ChemPort |
  13. Palmer, A.G., Skelton, N.J., Chazin, W.J., Wright, P.E. & Rance, M. Suppression of the effects of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms in the measurement of spin-spin relaxation rates. Molec. Phys. 75, 699−711 (1992). | ISI | ChemPort |
  14. Torchia, D.A., Nicholson, L.K., Cole, H.B.R. & Kay, L.E. Heteronuclear NMR studies of the molecular dynamics of staphylococcal nuclease, in NMR of Proteins (eds Clore, G. M. & Gronenborn, A.M.) 190−219 (Macmillan, London; 1993). | ChemPort |
  15. Wagner, G., Hyberts, S. & Peng, J.W. Study of Protein Dynamics by NMR, in NMR of Proteins (eds Clore, G. M. & Gronenborn, A.M.) 220−257 (Macmillan, London; 1993). | ChemPort |
  16. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. chem. Soc. 104, 4546−4559 (1982). | ISI | ChemPort |
  17. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. chem. Soc. 104, 4559−4570 (1982). | ISI | ChemPort |
  18. Dellwo, M.J. & Wand, A.J. Model-independent and model-dependent analysis of the global and internal dynamics of cyclosporin A. J. Am. chem. Soc. 111, 4571−4578 (1989). | ISI | ChemPort |
  19. Clore, G.M. et al. Deviation from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. chem. Soc. 112, 4989−4991 (1990). | ISI | ChemPort |
  20. Barbato, G., Ikura, M., Kay, L.E., Pastor, R. & Bax, A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269−5278 (1992). | PubMed | ISI | ChemPort |
  21. Kordel, J., Skelton, N.J., Akke, M., Palmer, A.G. & Chazin, W.J. Backbone dynamics of calcium-loaded calbindin D9k studies by two-dimensional proton detected 15N NMR spectroscopy. Biochemistry 31, 4856−4559 (1992). | PubMed | ISI | ChemPort |
  22. Nicholson, L.K. et al. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of Staphylococcal Nuclease. Biochemistry 31, 5253−5263 (1992). | PubMed | ISI | ChemPort |
  23. Constantine, K.L. et al. Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N NMR. FEBS Letts 336, 457−461 (1993). | Article | ChemPort |
  24. Farrow, N.A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984−6003 (1994). | PubMed | ISI | ChemPort |
  25. Farrar, T.C. & Becker, E.D. Pulse and Fourier Transform NMR 1−115 (Academic Press, New York, 1997).
  26. Szyperski, T., Luginbuhl, P., Otting, G., Guntert, P. & Wuethrich, K.. protein dynamics studied by rotating frame 15N spin relaxation times. J. Biomol. NMR 3, 151−164 (1993). | PubMed | ISI | ChemPort |
  27. Yamazaki, T. et al. Secondary structure and signal assignments of human-immunodeficiency-virus-1 protease complexed to a novel, structure-based inhibitor. Eur. J. Biochem. 219, 707−712 (1994). | PubMed | ISI | ChemPort |
  28. Clore, G.M., Driscoll, PC., Wingfield, P.T.& Gronenborn, A. Analysis of the backbone dynamics of interleukin-1beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29, 7387−7401 (1990). | PubMed | ISI | ChemPort |
  29. Stone, M.J. et al. The backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry 31, 4393−4406 (1992).
  30. Loeb, D.D. et al. Complete mutagenesis of the HIV-1 Protease. Nature 340, 397−400 (1989). | Article | PubMed | ISI | ChemPort |
  31. Yamazaki, T. et al. NMR and X-ray evidence that the HIV protease catalytic aspartyl groups are protonated in the complex formed by the protease and a non-peptide cyclic urea-based inhibitor. J. Am. chem. Soc. 116, 1994 (1994).
  32. Bai, Y, Milne, J.S., Mayne, L. & Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Prot., Struct. Funct. Genet. 17, 75−86 (1993). | ISI | ChemPort |
  33. Rose, J.R., Salto, R. & Craik, C.S. Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. J. biol. Chem. 268, 11939−11945 (1993). | PubMed | ISI | ChemPort |
  34. Cheng, Y.-S.E. et al. High-level synthsis of recombinant HIV-1 protease and the recovery of active enzyme from inclusion bodies. Gene 87, 243−248 (1990). | Article | PubMed | ISI | ChemPort |
  35. Grzesiek, S. & Bax, A. The importance of not saturating H2O in protein NMR. application to sensitivity enhancement and NOE measurements. J. Am. chem. Soc. 115, 12593−12594 (1993). | ISI | ChemPort |
  36. Peng, J.W., Thanabal, V. & Wagner, G. 2D heteronuclear NMR measurements of spin-lattice relaxation times in the rotating frame of X nuclei in heteronuclear HX spin systems. J. magn. Reson. 95, 421−427 (1991). | ISI | ChemPort |
  37. Palmer, A.G., Wright, P.E. & Ranee, M. Measurement of relaxation time constants for methyl groups by proton-detected heteronuclear NMR spectroscopy. Chem. Phys. Letts. 185, 41−46 (1991). | Article | ChemPort |
  38. Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. Numerical Recipes in C (Cambridge University Press, Cambridge, U.K., 1988).
  39. Venable, R.M. & Pastor, R.W. Frictional models for stochastic simulations of proteins. Biopolymers 27, 1001−1014 (1988). | PubMed | ISI | ChemPort |
  40. Woessner, D.E. Nuclear spin relaxation in ellipsoids undergoing rotational brownian motion. J. chem. Phys. 37, 647−654 (1962). | ISI | ChemPort |
  41. Palmer, A.G., Ranee, M. & Wright, P.E. Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13C heteronuclear NMR spectroscopy. J. Am. chem. Soc. 113, 4371−4380 (1991). | ISI | ChemPort |
  42. Kraulis, P. Molscript - a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946−950 (1991). | Article | ISI |
 Top
 Top
Abstract
Previous | Next
Table of contents
Download PDFDownload PDF
Send to a friendSend to a friend
Save this linkSave this link

natureevents

References
Export citation
Export references
natureproducts

Search buyers guide:

 
ADVERTISEMENT
 
Nature Structural & Molecular Biology
ISSN: 1545-9993
EISSN: 1545-9985
Journal home | Advance online publication | Current issue | Archive | Press releases | Supplements | For authors | Online submission | Permissions | For referees | Free online issue | About the journal | Contact the journal | Subscribe | Advertising | work@npg | naturereprints | About this site | For librarians
Nature Publishing Group, publisher of Nature, and other science journals and reference works©1995 Nature Publishing Group | Privacy policy