Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for heteromeric assembly and perinuclear organization of keratin filaments

Abstract

There is as yet no high-resolution data regarding the structure and organization of keratin intermediate filaments, which are obligate heteropolymers providing vital mechanical support in epithelia. We report the crystal structure of interacting 2B regions from the central coiled-coil domains of keratins 5 and 14 (K5 and K14), expressed in progenitor keratinocytes of epidermis. The interface of the K5–K14 coiled-coil heterodimer has asymmetric salt bridges, hydrogen bonds and hydrophobic contacts, and its surface exhibits a notable charge polarization. A trans-dimer homotypic disulfide bond involving Cys367 in K14's stutter region occurs in the crystal and in skin keratinocytes, where it is concentrated in a keratin filament cage enveloping the nucleus. We show that K14-Cys367 impacts nuclear shape in cultured keratinocytes and that mouse epidermal keratinocytes lacking K14 show aberrations in nuclear structure, highlighting a new function for keratin filaments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: K5 and K14 domain structure, and crystal structure of the K5–K14 2B heterocomplex.
Figure 2: Structure-function relationship of EBS.
Figure 3: A trans-dimer, K14 Cys367–mediated homotypic disulfide bond in the K5–K14 structure.
Figure 4: Calcium-dependent regulation and localization of the keratin-associated disulfide bond.
Figure 5: Localization of the keratin-associated disulfide bond in newborn-mouse epidermis, and impact of K14 loss on nuclear size and shape.
Figure 6: Direct linkage of K14 Cys367 and the maintenance of the round nuclear shape under high calcium medium.
Figure 7

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lazarides, E. Intermediate filaments as mechanical integrators of cellular space. Nature 283, 249–256 (1980).

    Article  CAS  Google Scholar 

  2. Fuchs, E. & Cleveland, D.W. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–519 (1998).

    Article  CAS  Google Scholar 

  3. Osborn, M. & Weber, K. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab. Invest. 48, 372–394 (1983).

    CAS  PubMed  Google Scholar 

  4. Omary, M.B., Coulombe, P.A. & McLean, W.H.I. Intermediate filament proteins and their associated diseases. N. Engl. J. Med. 351, 2087–2100 (2004).

    Article  CAS  Google Scholar 

  5. Szeverenyi, I. et al. The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases. Hum. Mutat. 29, 351–360 (2008).

    Article  CAS  Google Scholar 

  6. Kim, S. & Coulombe, P.A. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 21, 1581–1597 (2007).

    Article  CAS  Google Scholar 

  7. Hanukoglu, I. & Fuchs, E. The cDNA sequence of a Type II cytoskeletal keratin reveals constant and variable structural domains among keratins. Cell 33, 915–924 (1983).

    Article  CAS  Google Scholar 

  8. Kim, S., Wong, P. & Coulombe, P.A. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441, 362–365 (2006).

    Article  CAS  Google Scholar 

  9. Hatzfeld, M. & Weber, K. The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: use of site-specific mutagenesis and recombinant protein expression. J. Cell Biol. 110, 1199–1210 (1990).

    Article  CAS  Google Scholar 

  10. Strelkov, S.V. et al. Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J. 21, 1255–1266 (2002).

    Article  CAS  Google Scholar 

  11. Steinert, P.M., Marekov, L.N., Fraser, R.D. & Parry, D.A. Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. J. Mol. Biol. 230, 436–452 (1993).

    Article  CAS  Google Scholar 

  12. Bernot, K.M., Lee, C.H. & Coulombe, P.A. A small surface hydrophobic stripe in the coiled-coil domain of type I keratins mediates tetramer stability. J. Cell Biol. 168, 965–974 (2005).

    Article  CAS  Google Scholar 

  13. Franke, W.W. et al. Monoclonal cytokeratin antibody recognizing a heterotypic complex: immunological probing of conformational states of cytoskeletal proteins in filaments and in solution. Exp. Cell Res. 173, 17–37 (1987).

    Article  CAS  Google Scholar 

  14. Aebi, U., Haner, M., Troncoso, J., Eichner, R. & Engel, A. Unifying principles in intermediate filament assembly. Protoplasma 145, 73–81 (1988).

    Article  Google Scholar 

  15. Sokolova, A.V. et al. Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. Proc. Natl. Acad. Sci. USA 103, 16206–16211 (2006).

    Article  CAS  Google Scholar 

  16. Goldie, K.N. et al. Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. J. Struct. Biol. 158, 378–385 (2007).

    Article  CAS  Google Scholar 

  17. Strelkov, S.V. et al. Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J. Mol. Biol. 306, 773–781 (2001).

    Article  CAS  Google Scholar 

  18. Strelkov, S.V., Schumacher, J., Burkhard, P., Aebi, U. & Herrmann, H. Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins. J. Mol. Biol. 343, 1067–1080 (2004).

    Article  CAS  Google Scholar 

  19. Krimm, I. et al. The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10, 811–823 (2002).

    Article  CAS  Google Scholar 

  20. Dhe-Paganon, S., Werner, E.D., Chi, Y.I. & Shoelson, S.E. Structure of the globular tail of nuclear lamin. J. Biol. Chem. 277, 17381–17384 (2002).

    Article  CAS  Google Scholar 

  21. Meier, M. et al. Vimentin coil 1A-A molecular switch involved in the initiation of filament elongation. J. Mol. Biol. 390, 245–261 (2009).

    Article  CAS  Google Scholar 

  22. Nicolet, S., Herrmann, H., Aebi, U. & Strelkov, S.V. Atomic structure of vimentin coil 2. J. Struct. Biol. 170, 369–376 (2010).

    Article  CAS  Google Scholar 

  23. Fuchs, E. Keratins and the skin. Annu. Rev. Cell Dev. Biol. 11, 123–153 (1995).

    Article  CAS  Google Scholar 

  24. Moll, R., Franke, W.W., Schiller, D.L., Geiger, B. & Krepler, R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11–24 (1982).

    Article  CAS  Google Scholar 

  25. Coulombe, P.A. & Fuchs, E. Elucidating the early stages of keratin filament assembly. J. Cell Biol. 111, 153–169 (1990).

    Article  CAS  Google Scholar 

  26. Lee, C.H. & Coulombe, P.A. Self-organization of keratin intermediate filaments into cross-linked networks. J. Cell Biol. 186, 409–421 (2009).

    Article  CAS  Google Scholar 

  27. Coulombe, P.A. et al. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 66, 1301–1311 (1991).

    Article  CAS  Google Scholar 

  28. Coulombe, P.A., Kerns, M.L. & Fuchs, E. Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J. Clin. Invest. 119, 1784–1793 (2009).

    Article  CAS  Google Scholar 

  29. Herrmann, H. & Aebi, U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu. Rev. Biochem. 73, 749–789 (2004).

    Article  CAS  Google Scholar 

  30. Parry, D.A., Fraser, R.D. & Squire, J.M. Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. J. Struct. Biol. 163, 258–269 (2008).

    Article  CAS  Google Scholar 

  31. Vinson, C., Acharya, A. & Taparowsky, E.J. Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochim. Biophys. Acta 1759, 4–12 (2006).

    Article  CAS  Google Scholar 

  32. Wu, K.C. et al. Coiled-coil trigger motifs in the 1B and 2B rod domain segments are required for the stability of keratin intermediate filaments. Mol. Biol. Cell 11, 3539–3558 (2000).

    Article  CAS  Google Scholar 

  33. Yasukawa, K., Sawamura, D., McMillan, J.R., Nakamura, H. & Shimizu, H. Dominant and recessive compound heterozygous mutations in epidermolysis bullosa simplex demonstrate the role of the stutter region in keratin intermediate filament assembly. J. Biol. Chem. 277, 23670–23674 (2002).

    Article  CAS  Google Scholar 

  34. Wilson, A.K., Coulombe, P.A. & Fuchs, E. The roles of K5 and K14 head, tail, and R/K L L E G E domains in keratin filament assembly in vitro. J. Cell Biol. 119, 401–414 (1992).

    Article  CAS  Google Scholar 

  35. Arslan, M., Qin, Z. & Buehler, M.J. Coiled-coil intermediate filament stutter instability and molecular unfolding. Comput. Methods Biomech. Biomed. Engin. 14, 483–489 (2011).

    Article  Google Scholar 

  36. Sun, T.T. & Green, H. Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation. J. Biol. Chem. 253, 2053–2060 (1978).

    CAS  PubMed  Google Scholar 

  37. Hennings, H. & Holbrook, K.A. Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. Exp. Cell Res. 143, 127–142 (1983).

    Article  CAS  Google Scholar 

  38. Feige, M.J. & Hendershot, L.M. Disulfide bonds in ER protein folding and homeostasis. Curr. Opin. Cell Biol. 23, 167–175 (2011).

    Article  CAS  Google Scholar 

  39. Chung, B.M., Murray, C.I., Van Eyk, J.E. & Coulombe, P.A. Identification of a novel interaction between Annexin A2 and Keratin 17: Evidence for reciprocal regulation. J. Biol. Chem. 287, 7573–7581 (2012).

    Article  CAS  Google Scholar 

  40. Crick, F.H. Is alpha-keratin a coiled coil? Nature 170, 882–883 (1952).

    Article  CAS  Google Scholar 

  41. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544 (1991).

    Article  CAS  Google Scholar 

  42. Herrmann, H., Häner, M., Brettel, M., Ku, N.O. & Aebi, U. Characterization of distinct early assembly units of different intermediate filament proteins. J. Mol. Biol. 286, 1403–1420 (1999).

    Article  CAS  Google Scholar 

  43. Norlen, L. & Al-Amoudi, A. Stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating model. J. Invest. Dermatol. 123, 715–732 (2004).

    Article  CAS  Google Scholar 

  44. Hashimoto, Y. et al. Immunohistochemical localization of sulfhydryl oxidase correlates with disulfide crosslinking in the upper epidermis of rat skin. Arch. Dermatol. Res. 292, 570–572 (2000).

    Article  CAS  Google Scholar 

  45. Lyle, S. et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci. 111, 3179–3188 (1998).

    CAS  PubMed  Google Scholar 

  46. Troy, T.C. & Turksen, K. In vitro characteristics of early epidermal progenitors isolated from keratin 14 (K14)-deficient mice: insights into the role of keratin 17 in mouse keratinocytes. J. Cell. Physiol. 180, 409–421 (1999).

    Article  CAS  Google Scholar 

  47. Dupin, I., Sakamoto, Y. & Etienne-Manneville, S. Cytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus. J. Cell Sci. 124, 865–872 (2011).

    Article  CAS  Google Scholar 

  48. Arnesano, F. et al. The unusually stable quaternary structure of human Cu,Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfide status. J. Biol. Chem. 279, 47998–48003 (2004).

    Article  CAS  Google Scholar 

  49. Meister, A. & Anderson, M.E. Glutathione. Annu. Rev. Biochem. 52, 711–760 (1983).

    Article  CAS  Google Scholar 

  50. Ostergaard, H., Tachibana, C. & Winther, J.R. Monitoring disulfide bond formation in the eukaryotic cytosol. J. Cell Biol. 166, 337–345 (2004).

    Article  CAS  Google Scholar 

  51. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. in Methods in Enzymology, Macromolecular Crystallography Part A Vol. 276 (eds., Carter, C.W. Jr. & Sweet, R.M.) 307–326 (Academic Press, New York, 1997).

  52. Terwilliger, T.C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003).

    Article  CAS  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  54. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  55. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  56. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  57. Eswar, N. et al. Comparative Protein Structure Modeling with MODELLER. in Current Protocols in Bioinformatics (suppl. 15) 5.6.1–5.6.30 (John Wiley & Sons, Inc., 2006).

  58. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  59. Pang, Y.Y., Schermer, A., Yu, J. & Sun, T.T. Suprabasal change and subsequent formation of disulfide-stabilized homo- and hetero-dimers of keratins during esophageal epithelial differentiation. J. Cell Sci. 104, 727–740 (1993).

    PubMed  Google Scholar 

  60. Lloyd, C. et al. The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J. Cell Biol. 129, 1329–1344 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Coulombe and Leahy laboratories for guidance and support, M. Becker and N. Venugopalan for beamline assistance, and S. Bailey for comments. General Medicine and Cancer Institutes Collaborative Access Team receives support from the US National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Sciences (Y1-GM-1104). Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract DE-AC02-06CH11357. These studies were otherwise supported by US National Institutes of Health grants AR42047 (to P.A.C.) and HD055545 (to D.J.L.).

Author information

Authors and Affiliations

Authors

Contributions

C.-H.L. purified and crystallized the protein, analyzed the crystal structure, and performed in silico, in vitro and in vivo experiments. M.-S.K. collected, processed and refined the crystallographic data. B.M.C. performed the reconstitution experiment in A431 keratinocytes. D.J.L. aided in experimental design and provided guidance for several aspects of crystallography. P.A.C. designed the study, analyzed the data and wrote the manuscript in collaboration with C.-H.L., M.-S.K., B.M.C. and D.J.L.

Corresponding author

Correspondence to Pierre A Coulombe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–2 and Supplementary Note (PDF 1937 kb)

Supplementary Movie 1

Three-dimensional reconstruction of z-stack images (0.05 μm increment, depth = 5 μm; 101 images) captured by confocal microscopy of mouse skin keratinocytes cultured in low-calcium medium. Red, K14; blue, nucleus. (MOV 4477 kb)

Supplementary Movie 2

Three-dimensional reconstruction of z-stack images (0.05 μm increment, depth = 5 μm; 101 images) captured by confocal microscopy of mouse skin keratinocytes cultured in high-calcium medium. Red, K14; blue, nucleus. (MOV 4482 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CH., Kim, MS., Chung, B. et al. Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat Struct Mol Biol 19, 707–715 (2012). https://doi.org/10.1038/nsmb.2330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing