Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Duplex interrogation by a direct DNA repair protein in search of base damage

Abstract

ALKBH2 is a direct DNA repair dioxygenase guarding the mammalian genome against N1-methyladenine, N3-methylcytosine and 1,N6-ethenoadenine damage. A prerequisite for repair is to identify these lesions in the genome. Here we present crystal structures of human ALKBH2 bound to different duplex DNAs. Together with computational and biochemical analyses, our results suggest that DNA interrogation by ALKBH2 has two previously unknown features: (i) ALKBH2 probes base-pair stability and detects base pairs with reduced stability, and (ii) ALKBH2 does not have nor need a damage-checking site, which is critical for preventing spurious base cleavage for several glycosylases. The demethylation mechanism of ALKBH2 insures that only cognate lesions are oxidized and reversed to normal bases, and that a flipped, non-substrate base remains intact in the active site. Overall, the combination of duplex interrogation and oxidation chemistry allows ALKBH2 to detect and process diverse lesions efficiently and correctly.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Base pairs with different stability are discernible by ALKBH2.
Figure 2: Contributions of ALKBH2 to base flipping in duplex DNA.
Figure 3: ALKBH2 probes the stability of a base pair to detect DNA damage.
Figure 4: ALKBH2 does not have nor need a damage-checking site; its oxidation chemistry insures that non-substrate bases are not modified.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Sedgwick, B. Repairing DNA-methylation damage. Nat. Rev. Mol. Cell Biol. 5, 148–157 (2004).

    Article  CAS  Google Scholar 

  2. Sedgwick, B., Bates, P.A., Paik, J., Jacobs, S.C. & Lindahl, T. Repair of alkylated DNA: Recent advances. DNA Repair (Amst.) 6, 429–442 (2007).

    Article  CAS  Google Scholar 

  3. Yi, C., Yang, C.G. & He, C. A non-heme iron-mediated chemical demethylation in DNA and RNA. Acc. Chem. Res. 42, 519–529 (2009).

    Article  CAS  Google Scholar 

  4. Duncan, T. et al. Reversal of DNA alkylation damage by two human dioxygenases. Proc. Natl. Acad. Sci. USA 99, 16660–16665 (2002).

    Article  CAS  Google Scholar 

  5. Aas, P.A. et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421, 859–863 (2003).

    Article  CAS  Google Scholar 

  6. Ringvoll, J. et al. Repair deficient mice reveal mABH2 as the primary oxidative demethylase for repairing 1meA and 3meC lesions in DNA. EMBO J. 25, 2189–2198 (2006).

    Article  CAS  Google Scholar 

  7. Ringvoll, J. et al. AlkB homologue 2-mediated repair of ethenoadenine lesions in mammalian DNA. Cancer Res. 68, 4142–4149 (2008).

    Article  CAS  Google Scholar 

  8. Cetica, V. et al. Pediatric brain tumors: mutations of two dioxygenases (hABH2 and hABH3) that directly repair alkylation damage. J. Neurooncol. 94, 195–201 (2009).

    Article  CAS  Google Scholar 

  9. Wu, S.S. et al. Down-regulation of ALKBH2 increases cisplatin sensitivity in H1299 lung cancer cells. Acta Pharmacol. Sin. 32, 393–398 (2011).

    Article  Google Scholar 

  10. Gilljam, K.M. et al. Identification of a novel, widespread, and functionally important PCNA-binding motif. J. Cell Biol. 186, 645–654 (2009).

    Article  CAS  Google Scholar 

  11. Yang, C.G. et al. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 452, 961–965 (2008).

    Article  CAS  Google Scholar 

  12. Huffman, J.L., Sundheim, O. & Tainer, J.A. DNA base damage recognition and removal: new twists and grooves. Mutat. Res. 577, 55–76 (2005).

    Article  CAS  Google Scholar 

  13. Yang, C.G., Garcia, K. & He, C. Damage detection and base flipping in direct DNA alkylation repair. ChemBioChem 10, 417–423 (2009).

    Article  CAS  Google Scholar 

  14. Lau, A.Y., Wyatt, M.D., Glassner, B.J., Samson, L.D. & Ellenberger, T. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc. Natl. Acad. Sci. USA 97, 13573–13578 (2000).

    Article  CAS  Google Scholar 

  15. Wolfe, A.E. & O'Brien, P.J. Kinetic mechanism for the flipping and excision of 1,N6-ethenoadenine by human alkyladenine DNA glycosylase. Biochemistry 48, 11357–11369 (2009).

    Article  CAS  Google Scholar 

  16. Hendershot, J.M., Wolfe, A.E. & O'Brien, P.J. Substitution of active site tyrosines with tryptophan alters the free energy for nucleotide flipping by human alkyladenine DNA glycosylase. Biochemistry 50, 1864–1874 (2011).

    Article  CAS  Google Scholar 

  17. Bowman, B.R., Lee, S., Wang, S. & Verdine, G.L. Structure of Escherichia coli AlkA in complex with undamaged DNA. J. Biol. Chem. 285, 35783–35791 (2010).

    Article  CAS  Google Scholar 

  18. Hollis, T., Ichikawa, Y. & Ellenberger, T. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. EMBO J. 19, 758–766 (2000).

    Article  CAS  Google Scholar 

  19. Banerjee, A., Santos, W.L. & Verdine, G.L. Structure of a DNA glycosylase searching for lesions. Science 311, 1153–1157 (2006).

    Article  CAS  Google Scholar 

  20. Qi, Y. et al. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme. Nature 462, 762–766 (2009).

    Article  CAS  Google Scholar 

  21. Banerjee, A., Yang, W., Karplus, M. & Verdine, G.L. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 434, 612–618 (2005).

    Article  CAS  Google Scholar 

  22. Slupphaug, G. et al. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87–92 (1996).

    Article  CAS  Google Scholar 

  23. Cao, C., Jiang, Y.L., Stivers, J.T. & Song, F.H. Dynamic opening of DNA during the enzymatic search for a damaged base. Nat. Struct. Mol. Biol. 11, 1230–1236 (2004).

    Article  CAS  Google Scholar 

  24. Parker, J.B. et al. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature 449, 433–437 (2007).

    Article  CAS  Google Scholar 

  25. Fromme, J.C., Banerjee, A. & Verdine, G.L. DNA glycosylase recognition and catalysis. Curr. Opin. Struct. Biol. 14, 43–49 (2004).

    Article  CAS  Google Scholar 

  26. Friedman, J.I. & Stivers, J.T. Detection of damaged DNA bases by DNA glycosylase enzymes. Biochemistry 49, 4957–4967 (2010).

    Article  CAS  Google Scholar 

  27. Huang, H., Chopra, R., Verdine, G.L. & Harrison, S.C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282, 1669–1675 (1998).

    Article  CAS  Google Scholar 

  28. Monsen, V.T. et al. Divergent β-hairpins determine double-strand versus single-strand substrate recognition of human AlkB-homologues 2 and 3. Nucleic Acids Res. 38, 6447–6455 (2010).

    Article  CAS  Google Scholar 

  29. Chen, B., Liu, H., Sun, X. & Yang, C.G. Mechanistic insight into the recognition of single-stranded and double-stranded DNA substrates by ABH2 and ABH3. Mol. Biosyst. 6, 2143–2149 (2010).

    Article  Google Scholar 

  30. Ma, A., Hu, J., Karplus, M. & Dinner, A.R. Implications of alternative substrate binding modes for catalysis by uracil-DNA glycosylase: an apparent discrepancy resolved. Biochemistry 45, 13687–13696 (2006).

    Article  CAS  Google Scholar 

  31. Lu, L., Yi, C., Jian, X., Zheng, G. & He, C. Structure determination of DNA methylation lesions N1-meA and N3-meC in duplex DNA using a cross-linked protein-DNA system. Nucleic Acids Res. 38, 4415–4425 (2010).

    Article  CAS  Google Scholar 

  32. Bowman, B.R., Lee, S., Wang, S. & Verdine, G.L. Structure of the E. coli DNA glycosylase AlkA bound to the ends of duplex DNA: a system for the structure determination of lesion-containing DNA. Structure 16, 1166–1174 (2008).

    Article  CAS  Google Scholar 

  33. Cheng, X. & Blumenthal, R.M. Mammalian DNA methyltransferases: a structural perspective. Structure 16, 341–350 (2008).

    Article  Google Scholar 

  34. Yu, B. et al. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature 439, 879–884 (2006).

    Article  CAS  Google Scholar 

  35. Yi, C. et al. Iron-catalysed oxidation intermediates captured in a DNA repair dioxygenase. Nature 468, 330–333 (2010).

    Article  CAS  Google Scholar 

  36. Yu, B. & Hunt, J.F. Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB. Proc. Natl. Acad. Sci. USA 106, 14315–14320 (2009).

    Article  CAS  Google Scholar 

  37. Leonard, G.A. et al. Guanine-1,N6-ethenoadenine base pairs in the crystal structure of d(CGCGAATT(epsilon dA)GCG). Biochemistry 33, 4755–4761 (1994).

    Article  CAS  Google Scholar 

  38. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  Google Scholar 

  39. Blainey, P.C., van Oijen, A.M., Banerjee, A., Verdine, G.L. & Xie, X.S. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl. Acad. Sci. USA 103, 5752–5757 (2006).

    Article  CAS  Google Scholar 

  40. Blainey, P.C. et al. Nonspecifically bound proteins spin while diffusing along DNA. Nat. Struct. Mol. Biol. 16, 1224–1229 (2009).

    Article  CAS  Google Scholar 

  41. Lin, Y. et al. Using the bias from flow to elucidate single DNA repair protein sliding and interactions with DNA. Biophys. J. 96, 1911–1917 (2009).

    Article  CAS  Google Scholar 

  42. Hedglin, M. & O'Brien, P.J. Hopping enables a DNA repair glycosylase to search both strands and bypass a bound protein. ACS Chem. Biol. 5, 427–436 (2010).

    Article  CAS  Google Scholar 

  43. Schonhoft, J.D. & Stivers, J.T. Timing facilitated site transfer of an enzyme on DNA. Nat. Chem. Biol. 8, 205–210 (2012).

    Article  CAS  Google Scholar 

  44. Sun, Y., Friedman, J.I. & Stivers, J.T. Cosolute paramagnetic relaxation enhancements detect transient conformations of human uracil DNA glycosylase (hUNG). Biochemistry 50, 10724–10731 (2011).

    Article  CAS  Google Scholar 

  45. Dango, S. et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol. Cell 44, 373–384 (2011).

    Article  CAS  Google Scholar 

  46. Sundheim, O. et al. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO J. 25, 3389–3397 (2006).

    Article  CAS  Google Scholar 

  47. Krebs, C. et al. Rapid freeze-quench 57Fe Mossbauer spectroscopy: monitoring changes of an iron-containing active site during a biochemical reaction. Inorg. Chem. 44, 742–757 (2005).

    Article  CAS  Google Scholar 

  48. Schofield, C.J. & Zhang, Z.H. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr. Opin. Struct. Biol. 9, 722–731 (1999).

    Article  CAS  Google Scholar 

  49. Costas, M., Mehn, M.P., Jensen, M.P. & Que, L. Dioxygen activation at mononuclear nonheme iron active sites:enzymes, models, and intermediates. Chem. Rev. 104, 939–986 (2004).

    Article  CAS  Google Scholar 

  50. Liu, H., Llano, J. & Gauld, J.W.A. DFT study of nucleobase dealkylation by the DNA repair enzyme AlkB. J. Phys. Chem. B 113, 4887–4898 (2009).

    Article  CAS  Google Scholar 

  51. Tubbs, J.L. et al. Flipping of alkylated DNA damage bridges base and nucleotide excision repair. Nature 459, 808–813 (2009).

    Article  CAS  Google Scholar 

  52. Rubinson, E.H., Gowda, A.S., Spratt, T.E., Gold, B. & Eichman, B.F. An unprecedented nucleic acid capture mechanism for excision of DNA damage. Nature 468, 406–411 (2010).

    Article  CAS  Google Scholar 

  53. Mishina, Y., Chen, L.X. & He, C. Preparation and characterization of the native iron(II)-containing DNA repair AlkB protein directly from Escherichia coli. J. Am. Chem. Soc. 126, 16930–16936 (2004).

    Article  CAS  Google Scholar 

  54. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  55. Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 57, 1373–1382 (2001).

    Article  CAS  Google Scholar 

  56. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  57. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Download references

Acknowledgements

This study was supported by the US National Institutes of Health (GM071440 to C.H.), the Hundred Talent Program of the Chinese Academy of Sciences (to C.-G.Y.), the State Key Development Program of Basic Research of China (2009CB918502 to C.-G.Y.), the special grant for Stem Cell and Regenerative Medicine (XDA01040305 to C.-G.Y.), the National Science Foundation (MCB-0547854 to A.R.D.), Beamlines 23ID-B (General Medicine and Cancer Institutes Collaborative Access Team, GM/CA-CAT), 21ID-D (Life Sciences Collaborative Access Team, LS-CAT) and 24ID-E (The Northeastern Collaborative Access Team, NE-CAT) at the Advanced Photon Source at Argonne National Laboratory, the Shanghai Synchrotron Radiation Facility (BL17U1) and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

C.Y., C.-G.Y. and C.H. designed the experiments. Experiments were conducted by C.Y., B.C., W.Z., G.J., L.Z. and C.J.L.; computational analyses were carried out by B.Q. and A.R.D. C.Y. and C.H. wrote the paper, and B.Q., A.R.D. and C.-G.Y. contributed to editing the manuscript.

Corresponding authors

Correspondence to Cai-Guang Yang or Chuan He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–5 and Supplementary Note (PDF 3819 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, C., Chen, B., Qi, B. et al. Duplex interrogation by a direct DNA repair protein in search of base damage. Nat Struct Mol Biol 19, 671–676 (2012). https://doi.org/10.1038/nsmb.2320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing