Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP

Abstract

STING functions as both an adaptor protein signaling cytoplasmic double-stranded DNA and a direct immunosensor of cyclic diguanylate monophosphate (c-di-GMP). The crystal structures of the C-terminal domain of human STING (STINGCTD) and its complex with c-di-GMP reveal how STING recognizes c-di-GMP. In response to c-di-GMP binding, two surface loops, which serve as a gate and latch of the cleft formed by the dimeric STINGCTD, undergo rearrangements to interact with the ligand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of human STINGCTD in complex with c-di-GMP.
Figure 2: c-di-GMP recognition by STINGCTD.
Figure 3: Conformational changes in STINGCTD upon c-di-GMP binding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Kumar, H., Kawai, T. & Akira, S. Int. Rev. Immunol. 30, 16–34 (2011).

    Article  CAS  Google Scholar 

  2. Kawasaki, T., Kawai, T. & Akira, S. Immunol. Rev. 243, 61–73 (2011).

    Article  CAS  Google Scholar 

  3. Hornung, V. & Latz, E. Nat. Rev. Immunol. 10, 123–130 (2010).

    Article  CAS  Google Scholar 

  4. Ishikawa, H. & Barber, G.N. Nature 455, 674–678 (2008).

    Article  CAS  Google Scholar 

  5. Ishikawa, H., Ma, Z. & Barber, G.N. Nature 461, 788–792 (2009).

    Article  CAS  Google Scholar 

  6. Jin, L. et al. Mol. Cell Biol. 28, 5014–5026 (2008).

    Article  CAS  Google Scholar 

  7. Zhong, B. et al. Immunity 29, 538–550 (2008).

    Article  CAS  Google Scholar 

  8. Sun, W. et al. Proc. Natl. Acad. Sci. USA 106, 8653–8658 (2009).

    Article  CAS  Google Scholar 

  9. Tamayo, R., Pratt, J.T. & Camilli, A. Annu. Rev. Microbiol. 61, 131–148 (2007).

    Article  CAS  Google Scholar 

  10. Karaolis, D.K. et al. J. Immunol. 178, 2171–2181 (2007).

    Article  CAS  Google Scholar 

  11. McWhirter, S.M. et al. J. Exp. Med. 206, 1899–1911 (2009).

    Article  CAS  Google Scholar 

  12. Sauer, J.D. et al. Infect. Immun. 79, 688–694 (2011).

    Article  CAS  Google Scholar 

  13. Woodward, J.J., Iavarone, A.T. & Portnoy, D.A. Science 328, 1703–1705 (2010).

    Article  CAS  Google Scholar 

  14. Jin, L. et al. J. Immunol. 187, 2595–2601 (2011).

    Article  CAS  Google Scholar 

  15. Abdul-Sater, A.A. et al. Microbes Infect. 14, 188–197 (2012).

    Article  CAS  Google Scholar 

  16. Burdette, D.L. et al. Nature 478, 515–518 (2011).

    Article  CAS  Google Scholar 

  17. Holm, L. & Rosenstrom, P. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  18. Benach, J. et al. EMBO J. 26, 5153–5166 (2007).

    Article  CAS  Google Scholar 

  19. Jin, L. et al. Genes Immun. 12, 263–269 (2011).

    Article  CAS  Google Scholar 

  20. Tsuchida, T. et al. Immunity 33, 765–776 (2010).

    Article  CAS  Google Scholar 

  21. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  22. Collaborative Computational Project Number 4. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  23. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  24. Terwilliger, T.C. Acta Crystallogr. D Biol. Crystallogr. 59, 38–44 (2003).

    Article  Google Scholar 

  25. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  26. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  27. Chenna, R. et al. Nucleic Acids Res. 31, 3497–3500 (2003).

    Article  CAS  Google Scholar 

  28. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Qiu for providing human cDNA library, the staff at Shanghai Synchrotron Radiation Facility beamline 17U for assistance with data collection. This work was supported by the State Key Laboratory of Microbial Technology, Shandong University, by Hi-Tech Research and Development Program of China grant no. 2006AA02A324 to L.G. and by National Nature Science Foundation of China grant no. 31000330 to D.Z.

Author information

Authors and Affiliations

Authors

Contributions

G.S., D.Z., N.L., J.Z. and L.G. designed the research; G.S., D.Z., N.L., J.Z., C.Z., D.L., C.L., Q.Y. and Y.Z. performed the experiments; G.S., D.Z., N.L., J.Z., S.X. and L.G. analyzed data and wrote the paper; all authors contributed to the editing of the manuscript.

Corresponding author

Correspondence to Lichuan Gu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1564 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, G., Zhu, D., Li, N. et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat Struct Mol Biol 19, 725–727 (2012). https://doi.org/10.1038/nsmb.2332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing