Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p53-mediated heterochromatin reorganization regulates its cell fate decisions

Abstract

p53 is a major sensor of cellular stresses, and its activation influences cell fate decisions. We identified SUV39H1, a histone code 'writer' responsible for the histone H3 Lys9 trimethylation (H3K9me3) mark for 'closed' chromatin conformation, as a target of p53 repression. SUV39H1 downregulation was mediated transcriptionally by p21 and post-translationally by MDM2. The H3K9me3 repression mark was found to be associated with promoters of representative p53 target genes and was decreased upon p53 activation. Overexpression of SUV39H1 maintained higher levels of the H3K9me3 mark on these promoters and was associated with decreased p53 promoter occupancy and decreased transcriptional induction in response to p53. Conversely, SUV39H1 pre-silencing decreased H3K9me3 levels on these promoters and enhanced the p53 apoptotic response. These findings uncover a new layer of p53-mediated chromatin regulation through modulation of histone methylation at p53 target promoters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p53 downregulates SUV39H1 expression.
Figure 2: Induction of p53 abrogates the H3K9me3 heterochromatin mark.
Figure 3: Overexpression of SUV39H1 inhibits p53-dependent apoptosis.
Figure 4: Silencing of SUV39H1 causes p21-dependent, but p53-independent, cell cycle arrest.
Figure 5: Pre-silencing of SUV39H1 cooperates with chemotherapy-induced apoptosis in a p53-dependent manner.

Similar content being viewed by others

References

  1. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  2. Mandinova, A. & Lee, S.W. The p53 pathway as a target in cancer therapeutics: obstacles and promise. Sci. Transl. Med. 3, 64rv1 (2011).

    Article  CAS  Google Scholar 

  3. Vousden, K.H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  Google Scholar 

  4. Vazquez, A., Bond, E.E., Levine, A.J. & Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov. 7, 979–987 (2008).

    Article  CAS  Google Scholar 

  5. Liu, L. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19, 1202–1209 (1999).

    Article  CAS  Google Scholar 

  6. Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

    Article  CAS  Google Scholar 

  7. Dai, C. & Gu, W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol. Med. 16, 528–536 (2010).

    Article  CAS  Google Scholar 

  8. Brooks, C.L. & Gu, W. The impact of acetylation and deacetylation on the p53 pathway. Protein Cell 2, 456–462 (2011).

    Article  CAS  Google Scholar 

  9. Drost, J. et al. BRD7 is a candidate tumour suppressor gene required for p53 function. Nat. Cell Biol. 12, 380–389 (2010).

    Article  CAS  Google Scholar 

  10. Lee, D. et al. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J. Biol. Chem. 277, 22330–22337 (2002).

    Article  CAS  Google Scholar 

  11. Naidu, S.R., Love, I.M., Imbalzano, A.N., Grossman, S.R. & Androphy, E.J. The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene 28, 2492–2501 (2009).

    Article  CAS  Google Scholar 

  12. Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell 128, 721–733 (2007).

    Article  CAS  Google Scholar 

  13. Jaskelioff, M. & Peterson, C.L. Chromatin and transcription: histones continue to make their marks. Nat. Cell Biol. 5, 395–399 (2003).

    Article  CAS  Google Scholar 

  14. Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259–272 (2004).

    Article  CAS  Google Scholar 

  15. Schneider, R. & Grosschedl, R. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev. 21, 3027–3043 (2007).

    Article  CAS  Google Scholar 

  16. Rubbi, C.P. & Milner, J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J. 22, 975–986 (2003).

    Article  CAS  Google Scholar 

  17. Allison, S.J. & Milner, J. Loss of p53 has site-specific effects on histone H3 modification, including serine 10 phosphorylation important for maintenance of ploidy. Cancer Res. 63, 6674–6679 (2003).

    CAS  PubMed  Google Scholar 

  18. Jacobs, S.A. et al. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J. 20, 5232–5241 (2001).

    Article  CAS  Google Scholar 

  19. Sims, R.J. III, Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629–639 (2003).

    Article  CAS  Google Scholar 

  20. Rice, J.C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1598 (2003).

    Article  CAS  Google Scholar 

  21. Sugrue, M.M., Shin, D.Y., Lee, S.W. & Aaronson, S.A. Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc. Natl. Acad. Sci. USA 94, 9648–9653 (1997).

    Article  CAS  Google Scholar 

  22. Ide, T. et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol. Cell 36, 379–392 (2009).

    Article  CAS  Google Scholar 

  23. Muñoz-Fontela, C. et al. Transcriptional role of p53 in interferon-mediated antiviral immunity. J. Exp. Med. 205, 1929–1938 (2008).

    Article  Google Scholar 

  24. Fodor, B.D., Shukeir, N., Reuter, G. & Jenuwein, T. Mammalian Su(var) genes in chromatin control. Annu. Rev. Cell Dev. Biol. 26, 471–501 (2010).

    Article  CAS  Google Scholar 

  25. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  Google Scholar 

  26. El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  27. Contente, A., Dittmer, A., Koch, M.C., Roth, J. & Dobbelstein, M. A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat. Genet. 30, 315–320 (2002).

    Article  Google Scholar 

  28. Marine, J.C. & Lozano, G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 17, 93–102 (2010).

    Article  CAS  Google Scholar 

  29. Mirza, A. et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 21, 2613–2622 (2002).

    Article  CAS  Google Scholar 

  30. Hoffman, W.H., Biade, S., Zilfou, J.T., Chen, J. & Murphy, M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J. Biol. Chem. 277, 3247–3257 (2002).

    Article  CAS  Google Scholar 

  31. Johnsen, J.I. et al. p53-mediated negative regulation of stathmin/Op18 expression is associated with G2/M cell-cycle arrest. Int. J. Cancer 88, 685–691 (2000).

    Article  CAS  Google Scholar 

  32. Krause, K. et al. Expression of the cell cycle phosphatase cdc25C is down-regulated by the tumor suppressor protein p53 but not by p73. Biochem. Biophys. Res. Commun. 284, 743–750 (2001).

    Article  CAS  Google Scholar 

  33. Badie, C., Itzhaki, J.E., Sullivan, M.J., Carpenter, A.J. & Porter, A.C. Repression of CDK1 and other genes with CDE and CHR promoter elements during DNA damage-induced G2/M arrest in human cells. Mol. Cell. Biol. 20, 2358–2366 (2000).

    Article  CAS  Google Scholar 

  34. Innocente, S.A., Abrahamson, J.L., Cogswell, J.P. & Lee, J.M. p53 regulates a G2 checkpoint through cyclin B1. Proc. Natl. Acad. Sci. USA 96, 2147–2152 (1999).

    Article  CAS  Google Scholar 

  35. Löhr, K., Moritz, C., Contente, A. & Dobbelstein, M. p21/CDKN1A mediates negative regulation of transcription by p53. J. Biol. Chem. 278, 32507–32516 (2003).

    Article  Google Scholar 

  36. Bosch-Presegué, L. et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol. Cell 42, 210–223 (2011).

    Article  Google Scholar 

  37. Roberts, C.W. & Orkin, S.H. The SWI/SNF complex–chromatin and cancer. Nat. Rev. Cancer 4, 133–142 (2004).

    Article  CAS  Google Scholar 

  38. O'Carroll, D. et al. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell. Biol. 20, 9423–9433 (2000).

    Article  CAS  Google Scholar 

  39. Waldman, T., Lengauer, C., Kinzler, K.W. & Vogelstein, B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381, 713–716 (1996).

    Article  CAS  Google Scholar 

  40. Cherrier, T. et al. p21WAF1 gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene 28, 3380–3389 (2009).

    Article  CAS  Google Scholar 

  41. Pommier, Y., Leo, E., Zhang, H. & Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433 (2010).

    Article  CAS  Google Scholar 

  42. Fu, Y. et al. Medicinal chemistry of paclitaxel and its analogues. Curr. Med. Chem. 16, 3966–3985 (2009).

    Article  CAS  Google Scholar 

  43. Peters, A.H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  Google Scholar 

  44. Kondo, Y. et al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS ONE 3, e2037 (2008).

    Article  Google Scholar 

  45. Berk, A.J. Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24, 7673–7685 (2005).

    Article  CAS  Google Scholar 

  46. Soria, C., Estermann, F.E., Espantman, K.C. & O'Shea, C.C. Heterochromatin silencing of p53 target genes by a small viral protein. Nature 466, 1076–1081 (2010).

    Article  CAS  Google Scholar 

  47. Chen, L. et al. MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output. EMBO J. 29, 2538–2552 (2010).

    Article  CAS  Google Scholar 

  48. Cross, B. et al. Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J. Biol. Chem. 286, 16018–16029 (2011).

    Article  CAS  Google Scholar 

  49. Chi, P., Allis, C.D. & Wang, G.G. Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Article  CAS  Google Scholar 

  50. Ellis, L., Atadja, P.W. & Johnstone, R.W. Epigenetics in cancer: targeting chromatin modifications. Mol. Cancer Ther. 8, 1409–1420 (2009).

    Article  CAS  Google Scholar 

  51. Hake, S.B., Xiao, A. & Allis, C.D. Linking the epigenetic 'language' of covalent histone modifications to cancer. Br. J. Cancer 90, 761–769 (2004).

    Article  CAS  Google Scholar 

  52. Ozdağ, H. et al. Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics 7, 90 (2006).

    Article  Google Scholar 

  53. Godar, S. et al. Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell 134, 62–73 (2008).

    Article  CAS  Google Scholar 

  54. Zhou, B.P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat. Cell Biol. 3, 973–982 (2001).

    Article  CAS  Google Scholar 

  55. Fang, L. et al. p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53. Oncogene 18, 2789–2797 (1999).

    Article  CAS  Google Scholar 

  56. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  Google Scholar 

  57. Shangary, S. et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl. Acad. Sci. USA 105, 3933–3938 (2008).

    Article  CAS  Google Scholar 

  58. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  Google Scholar 

  59. Mungamuri, S.K., Yang, X., Thor, A.D. & Somasundaram, K. Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res. 66, 4715–4724 (2006).

    Article  CAS  Google Scholar 

  60. Schaniel, C. et al. Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells 27, 2979–2991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank E. Bernstein and her lab members as well as C. Munoz-Fontela, M. Kracikova and W. Murk for helpful discussions. The project was supported by grant P01CA080058 from the National Cancer Institute (to S.A.A. and S.W.L.). The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

S.K.M. and S.A.A. planned the project. S.K.M. conducted all the experiments, with participation by E.K.B. S.W. provided the MI-219 MDM2 inhibitor. S.A.A. supervised the study, along with S.W.L. and W.G. S.K.M. and S.A.A. wrote the paper.

Corresponding author

Correspondence to Stuart A Aaronson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 2787 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mungamuri, S., Benson, E., Wang, S. et al. p53-mediated heterochromatin reorganization regulates its cell fate decisions. Nat Struct Mol Biol 19, 478–484 (2012). https://doi.org/10.1038/nsmb.2271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing