Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance

Abstract

The asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a) acts as a repressive mark that antagonizes trimethylation of H3 lysine 4. Here we report that H3R2 is also symmetrically dimethylated (H3R2me2s) by PRMT5 and PRMT7 and present in euchromatic regions. Profiling of H3-tail interactors by SILAC MS revealed that H3R2me2s excludes binding of RBBP7, a central component of co-repressor complexes Sin3a, NURD and PRC2. Conversely H3R2me2s enhances binding of WDR5, a common component of the coactivator complexes MLL, SET1A, SET1B, NLS1 and ATAC. The interaction of histone H3 with WDR5 distinguishes H3R2me2s from H3R2me2a, which impedes the recruitment of WDR5 to chromatin. The crystallographic structure of WDR5 and the H3R2me2s peptide elucidates the molecular determinants of this high affinity interaction. Our findings identify H3R2me2s as a previously unknown mark that keeps genes poised in euchromatin for transcriptional activation upon cell-cycle withdrawal and differentiation in human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H3R2me2s is a newly discovered histone modification associated with euchromatic sites.
Figure 2: H3R2me2s impedes co-repressor binding.
Figure 3: H3R2me2s is bound at high affinity by WDR5.
Figure 4: Crystal structure of WDR5 bound to the N terminus of histone H3 symmetrically dimethylated on arginine 2.
Figure 5: WDR5 is recruited by H3R2me2s to chromatin.
Figure 6: PRMT7 and PRMT5–WDR77 methylate H3R2me2s.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Kirmizis, A. et al. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449, 928–932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Strahl, B.D. et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol. 11, 996–1000 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Migliori, V., Phalke, S., Bezzi, M. & Guccione, E. Arginine/lysine-methyl/methyl switches: biochemical role of histone arginine methylation in transcriptional regulation. Epigenomics 2, 119–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao, X.D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Roh, T.Y., Cuddapah, S., Cui, K. & Zhao, K. The genomic landscape of histone modifications in human T cells. Proc. Natl. Acad. Sci. USA 103, 15782–15787 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Trievel, R.C. & Shilatifard, A. WDR5, a complexed protein. Nat. Struct. Mol. Biol. 16, 678–680 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Yokoyama, A. et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol. 24, 5639–5649 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guccione, E. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449, 933–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Hyllus, D. et al. PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev. 21, 3369–3380 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iberg, A.N. et al. Arginine methylation of the histone H3 tail impedes effector binding. J. Biol. Chem. 283, 3006–3010 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Otani, J. et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep. 10, 1235–1241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, Q. et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat. Struct. Mol. Biol. 16, 304–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Southall, S.M., Wong, P.S., Odho, Z., Roe, S.M. & Wilson, J.R. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol. Cell 33, 181–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Blake, M.C., Jambou, R.C., Swick, A.G., Kahn, J.W. & Azizkhan, J.C. Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter. Mol. Cell. Biol. 10, 6632–6641 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ceribelli, M. et al. The histone-like NF-Y is a bifunctional transcription factor. Mol. Cell. Biol. 28, 2047–2058 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martínez-Pastor, M.T. et al. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15, 2227–2235 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Singh, D.P., Fatma, N., Kimura, A., Chylack, L.T. Jr. & Shinohara, T. LEDGF binds to heat shock and stress-related element to activate the expression of stress-related genes. Biochem. Biophys. Res. Commun. 283, 943–955 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hakimi, M.A. et al. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418, 994–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Saade, E. et al. Analysis of interaction partners of H4 histone by a new proteomics approach. Proteomics 9, 4934–4943 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Murzina, N.V. et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16, 1077–1085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 13, 713–719 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Song, J.J. & Kingston, R.E. WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem. 283, 35258–35264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel, A., Vought, V.E., Dharmarajan, V. & Cosgrove, M.S. A conserved arginine-containing motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex. J. Biol. Chem. 283, 32162–32175 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Patel, A., Dharmarajan, V. & Cosgrove, M.S. Structure of WDR5 bound to mixed lineage leukemia protein-1 peptide. J. Biol. Chem. 283, 32158–32161 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Patel, A., Dharmarajan, V., Vought, V.E. & Cosgrove, M.S. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J. Biol. Chem. 284, 24242–24256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schuetz, A. et al. Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J. 25, 4245–4252 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruthenburg, A.J. et al. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat. Struct. Mol. Biol. 13, 704–712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Couture, J.F., Collazo, E. & Trievel, R.C. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat. Struct. Mol. Biol. 13, 698–703 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Han, Z. et al. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol. Cell 22, 137–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Collins, J.M. & Foster, K.A. Differentiation of promyelocytic (HL-60) cells into mature granulocytes: mitochondrial-specific rhodamine 123 fluorescence. J. Cell Biol. 96, 94–99 (1983).

    Article  CAS  PubMed  Google Scholar 

  43. Nishioka, K. & Reinberg, D. Methods and tips for the purification of human histone methyltransferases. Methods 31, 49–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Cao, F. et al. An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interactions with the MLL1 SET domain. PLoS ONE 5, e14102 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ang, Y.S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y.L., Faiola, F., Xu, M., Pan, S. & Martinez, E. Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J. Biol. Chem. 283, 33808–33815 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cai, Y. et al. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J. Biol. Chem. 285, 4268–4272 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Phalke, S. et al. Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2. Nat. Genet. 41, 696–702 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. McCoy, A.J., Storoni, L.C. & Read, R.J. Simple algorithm for a maximum-likelihood SAD function. Acta Crystallogr. D Biol. Crystallogr. 60, 1220–1228 (2004).

    Article  PubMed  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  54. Brünger, A.T. et al. Crystallography and NMR system (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to C.L. Wei, H. Thoreau and Z.H. Yap for help with the Solexa high-throughput sequencing; to P. Rorth and X. Yang for the use of the Drosophila facility; to S. Choksi (Institute of Molecular and Cell Biology (IMCB)) for providing the zebrafish total protein extract; to V. Do Dang and X.Y. Fu (National University of Singapore) for sharing the PSuper vector targeting WDR77 and to N. Jennifer for technical help. We thank M. Walsh, P. Kaldis, X.Y. Fu and S. Choksi for discussions and P. Rorth, G. Gargiulo, M.M. Zhou and M. Walsh for critically reading the manuscript. This work was supported by the IMCB, A-STAR core funding to E.G.

Author information

Authors and Affiliations

Authors

Contributions

V.M. and E.G. conceived the study and designed the experiments. V.M. conducted ChIP, ChIP-seq, SILAC sample preparation, analysis and experimental validation of SILAC results, methylation assay and biochemical experiments. E.G. supervised the project and wrote the manuscript, which was reviewed by V.M. and M.M. Figures were prepared by V.M., E.G., J.M., D.L. and M.M. J.M., D.L. and V.K. conducted the bioinformatic analysis of ChIP data. S.P. did the polytene staining. J.G. and W.B. generated the MS results and primary analysis, and P.C. and A.D.M. generated the BIACORE datasets. C.B. and B.A. carried out the initial peptide pull-down analysis. V.C. and M.M. obtained crystals, and collected and analyzed X-ray data. M.B., W.C.M. and S.K.S. contributed technical help.

Corresponding author

Correspondence to Ernesto Guccione.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Methods (PDF 4820 kb)

Supplementary Data 1

Genomic coordinates and PSCR primers (XLS 272 kb)

Supplementary Data 2

Sheet1 (SILAC): Quantification of the interaction of all the components of the WDR5 complex with H3, H3R2me2a and H3R2me2s as revealed by SILAC screening. Sheet2 (BIACORE) Quantification of the interaction of WDR5 with differentially methylated pepides using BIACORE assays. The dissociation constant (KD) is indicated. (XLS 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migliori, V., Müller, J., Phalke, S. et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 19, 136–144 (2012). https://doi.org/10.1038/nsmb.2209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing