Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A tightly regulated molecular toggle controls AAA+ disaggregase

Abstract

The ring-forming AAA+ protein ClpB cooperates with the DnaK chaperone system to refold aggregated proteins in Escherichia coli. The M domain, a ClpB-specific coiled-coil structure with two wings, motif 1 and motif 2, is essential to disaggregation, but the positioning and mechanistic role of M domains in ClpB hexamers remain unresolved. We show that M domains nestle at the ClpB ring surface, with both M-domain motifs contacting the first ATPase domain (AAA-1). Both wings contribute to maintaining a repressed ClpB activity state. Motif 2 docks intramolecularly to AAA-1 to regulate ClpB unfolding power, and motif 1 contacts a neighboring AAA-1 domain. Mutations that stabilize motif 2 docking repress ClpB, whereas destabilization leads to derepressed ClpB activity with greater unfolding power that is toxic in vivo. Our results underline the vital nature of tight ClpB activity control and elucidate a regulated M-domain toggle control mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural dynamics of ClpB upon oligomerization and ATP binding.
Figure 2: ATP binding to AAA-1 leads to protection of M domain in HX experiments.
Figure 3: M-domain motif 1 is near the C-terminal subdomain of neighboring AAA-1.
Figure 4: Characterization of inactive and hyperactive ClpB M-domain variants.
Figure 5: ClpB M-domain mutants are arrested in distinct conformational states.
Figure 6: A salt bridge network between AAA-1 and M-domain motif 2 controls ClpB activity.
Figure 7: Hyperactive ClpB M-domain variants are toxic in vivo.
Figure 8: Regulation of ClpB activity through M domains.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tyedmers, J., Mogk, A. & Bukau, B. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777–788 (2010).

    Article  CAS  Google Scholar 

  2. Glover, J.R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).

    Article  CAS  Google Scholar 

  3. Goloubinoff, P., Mogk, A., Peres Ben Zvi, A., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999).

    Article  CAS  Google Scholar 

  4. Zolkiewski, M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J. Biol. Chem. 274, 28083–28086 (1999).

    Article  CAS  Google Scholar 

  5. Motohashi, K., Watanabe, Y., Yohda, M. & Yoshida, M. Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96, 7184–7189 (1999).

    Article  CAS  Google Scholar 

  6. Hong, S.W. & Vierling, E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. USA 97, 4392–4397 (2000).

    Article  CAS  Google Scholar 

  7. Queitsch, C., Hong, S.W., Vierling, E. & Lindquist, S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12, 479–492 (2000).

    Article  CAS  Google Scholar 

  8. Sanchez, Y. & Lindquist, S.L. HSP104 required for induced thermotolerance. Science 248, 1112–1115 (1990).

    Article  CAS  Google Scholar 

  9. Squires, C.L., Pedersen, S., Ross, B.M. & Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173, 4254–4262 (1991).

    Article  CAS  Google Scholar 

  10. Lum, R., Tkach, J.M., Vierling, E. & Glover, J.R. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem. 279, 29139–29146 (2004).

    Article  CAS  Google Scholar 

  11. Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004).

    Article  CAS  Google Scholar 

  12. Lee, S. et al. The structure of ClpB. A molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).

    Article  CAS  Google Scholar 

  13. Mogk, A. et al. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP-hydrolysis and chaperone activity. J. Biol. Chem. 278, 17615–17624 (2003).

    Article  CAS  Google Scholar 

  14. Kedzierska, S., Akoev, V., Barnett, M.E. & Zolkiewski, M. Structure and function of the middle domain of ClpB from Escherichia coli. Biochemistry 42, 14242–14248 (2003).

    Article  CAS  Google Scholar 

  15. Sielaff, B. & Tsai, F.T. The M-domain controls Hsp104 protein remodeling activity in an Hsp70/Hsp40-dependent manner. J. Mol. Biol. 402, 30–37 (2010).

    Article  CAS  Google Scholar 

  16. Miot, M. et al. Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc. Natl. Acad. Sci. USA 108, 6915–6920 (2011).

    Article  CAS  Google Scholar 

  17. Haslberger, T. et al. M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol. Cell 25, 247–260 (2007).

    Article  CAS  Google Scholar 

  18. Lee, S., Choi, J.M. & Tsai, F.T. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Mol. Cell 25, 261–271 (2007).

    Article  CAS  Google Scholar 

  19. Wendler, P. et al. Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 131, 1366–1377 (2007).

    Article  CAS  Google Scholar 

  20. Lee, S., Sielaff, B., Lee, J. & Tsai, F.T. CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc. Natl. Acad. Sci. USA 107, 8135–8140 (2010).

    Article  CAS  Google Scholar 

  21. Wales, T.E. & Engen, J.R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 25, 158–170 (2006).

    Article  CAS  Google Scholar 

  22. Schlee, S., Groemping, Y., Herde, P., Seidel, R. & Reinstein, J. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites. J. Mol. Biol. 306, 889–899 (2001).

    Article  CAS  Google Scholar 

  23. Kim, K.I. et al. Heptameric ring structure of the heat-shock protein ClpB, a protein- activated ATPase in Escherichia coli. J. Mol. Biol. 303, 655–666 (2000).

    Article  CAS  Google Scholar 

  24. Akoev, V., Gogol, E.P., Barnett, M.E. & Zolkiewski, M. Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB. Protein Sci. 13, 567–574 (2004).

    Article  CAS  Google Scholar 

  25. del Castillo, U., Fernandez-Higuero, J.A., Perez-Acebron, S., Moro, F. & Muga, A. Nucleotide utilization requirements that render ClpB active as a chaperone. FEBS Lett. 584, 929–934 (2010).

    Article  CAS  Google Scholar 

  26. Zietkiewicz, S., Slusarz, M.J., Slusarz, R., Liberek, K. & Rodziewicz-Motowidlo, S. Conformational stability of the full-atom hexameric model of the ClpB chaperone from Escherichia coli. Biopolymers 93, 47–60 (2010).

    Article  CAS  Google Scholar 

  27. Haslberger, T. et al. Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments. Nat. Struct. Mol. Biol. 15, 641–650 (2008).

    Article  CAS  Google Scholar 

  28. Doyle, S.M. et al. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat. Struct. Mol. Biol. 14, 114–122 (2007).

    Article  CAS  Google Scholar 

  29. Winkler, J., Tyedmers, J., Bukau, B. & Mogk, A. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J. Cell Biol. 198, 387–404 (2012).

    Article  CAS  Google Scholar 

  30. Maglica, Z., Striebel, F. & Weber-Ban, E. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity. J. Mol. Biol. 384, 503–511 (2008).

    Article  CAS  Google Scholar 

  31. Schlothauer, T., Mogk, A., Dougan, D.A., Bukau, B. & Turgay, K. MecA, an adaptor protein necessary for ClpC chaperone activity. Proc. Natl. Acad. Sci. USA 100, 2306–2311 (2003).

    Article  CAS  Google Scholar 

  32. Martin, A., Baker, T.A. & Sauer, R.T. Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 437, 1115–1120 (2005).

    Article  CAS  Google Scholar 

  33. Seyffer, F. et al. Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces. Nat. Struct. Mol. Biol. advance online publication, doi:10.1038/nsmb.2442 (18 November 2012).

  34. del Castillo, U. et al. A quantitative analysis of the effect of nucleotides and the M domain on the association equilibrium of ClpB. Biochemistry 50, 1991–2003 (2011).

    Article  CAS  Google Scholar 

  35. Sauer, R.T. & Baker, T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011).

    Article  CAS  Google Scholar 

  36. Schirmer, E.C., Homann, O.R., Kowal, A.S. & Lindquist, S. Dominant gain-of-function mutations in Hsp104p reveal crucial roles for the middle region. Mol. Biol. Cell 15, 2061–2072 (2004).

    Article  CAS  Google Scholar 

  37. Lee, U. et al. Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. Plant Cell 17, 559–571 (2005).

    Article  CAS  Google Scholar 

  38. Rist, W., Jorgensen, T.J., Roepstorff, P., Bukau, B. & Mayer, M.P. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange. J. Biol. Chem. 278, 51415–51421 (2003).

    Article  CAS  Google Scholar 

  39. Zhang, Z. & Marshall, A.G. A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J. Am. Soc. Mass Spectrom. 9, 225–233 (1998).

    Article  CAS  Google Scholar 

  40. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  Google Scholar 

  41. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  42. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  Google Scholar 

  43. MacKerell, A.D., Banavali, N. & Foloppe, N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56, 257–265 (2001).

    Article  Google Scholar 

  44. Onufriev, A., Bashford, D. & Case, D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55, 383–394 (2004).

    Article  CAS  Google Scholar 

  45. Monticelli, L. et al. The MARTINI coarse grained forcefield: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008).

    Article  CAS  Google Scholar 

  46. Periole, X., Cavalli, M., Marrink, S.J. & Ceruso, M. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics and intermolecular recognition. J. Chem. Theory Comput. 5, 2531–2543 (2009).

    Article  CAS  Google Scholar 

  47. Lindahl, E., Azuara, C., Koehl, P. & Delarue, M. NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res. 34, W52–W56 (2006).

    Article  CAS  Google Scholar 

  48. Kulinski, T. et al. Conformational analysis of galanin using end to end distance distribution observed by Forster resonance energy transfer. Eur. Biophys. J. 26, 145–154 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (BU617-17) to B. Bukau and A. Mogk. We thank T. Ruppert and J. Fiaux for help in HX experiments and L. Guilbride for editing the manuscript. E. Kummer and F. Seyffer were supported by the Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology. Y. Oguchi was supported by a Humboldt fellowship. M.B. and R.C.W. acknowledge the support of the Klaus Tschira Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.O., E.K., F.S., M.B., R.C.W., A.M. and B.B. conceived and designed experiments. Y.O., E.K., F.S., M.B., B.A. and R.Z. carried out experiments. Y.O., E.K., F.S., M.B., B.A., R.Z., R.C.W., A.M. and B.B. analyzed the data. R.C.W., A.M. and B.B. wrote the manuscript.

Corresponding authors

Correspondence to Axel Mogk or Bernd Bukau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 4341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oguchi, Y., Kummer, E., Seyffer, F. et al. A tightly regulated molecular toggle controls AAA+ disaggregase. Nat Struct Mol Biol 19, 1338–1346 (2012). https://doi.org/10.1038/nsmb.2441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2441

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing