Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of human CDC7 kinase in complex with its activator DBF4

This article has been updated

Abstract

CDC7 is a serine/threonine kinase that is essential for the initiation of eukaryotic DNA replication. CDC7 activity is controlled by its activator, DBF4. Here we present crystal structures of human CDC7–DBF4 in complex with a nucleotide or ATP-competing small molecules, revealing the active and inhibited forms of the kinase, respectively. DBF4 wraps around CDC7, burying approximately 6,000 Å2 of hydrophobic molecular surface in a bipartite interface. The effector domain of DBF4, containing conserved motif C, is essential and sufficient to support CDC7 kinase activity by binding to the kinase N-terminal lobe and stabilizing its canonical αC helix. DBF4 motif M latches onto the C-terminal lobe of the kinase, acting as a tethering domain. Our results elucidate the structural basis for binding to and activation of CDC7 by DBF4 and provide a framework for the design of more potent and specific CDC7 inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of CDC7 and DBF4 proteins and the enzymatic activity of a representative set of deletion constructs.
Figure 2: Structure of the CDC7–DBF4 heterodimer and a view on the active site.
Figure 3: Details of the DBF4 structure and its interface with CDC7.
Figure 4: DBF4 motif C and its contacts with αC are pivotal for the ability of DBF4 to activate CDC7.
Figure 5: The inward face of CDC7 αC becomes exposed to solvent in the absence of DBF4 motif C.
Figure 6: Binding of ATP-competitive inhibitors to the CDC7 active site.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Change history

  • 05 December 2012

    In the version of this supplementary file originally posted online, there were partial omissions of data in graphs and chromatograms on pages 2, 4 and 8. These errors have been corrected in this file as of 5 December 2012.

References

  1. Labib, K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 24, 1208–1219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jackson, A.L., Pahl, P.M., Harrison, K., Rosamond, J. & Sclafani, R.A. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol. Cell. Biol. 13, 2899–2908 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weinreich, M. & Stillman, B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 18, 5334–5346 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oshiro, G., Owens, J.C., Shellman, Y., Sclafani, R.A. & Li, J.J. Cell cycle control of Cdc7p kinase activity through regulation of Dbf4p stability. Mol. Cell Biol. 19, 4888–4896 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Montagnoli, A. et al. Drf1, a novel regulatory subunit for human Cdc7 kinase. EMBO J. 21, 3171–3181 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi, T.S. & Walter, J.C. Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes Dev. 19, 2295–2300 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lei, M. et al. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 11, 3365–3374 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cho, W.H., Lee, Y.J., Kong, S.I., Hurwitz, J. & Lee, J.K. CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proc. Natl. Acad. Sci. USA 103, 11521–11526 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Masai, H. et al. Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J. Biol. Chem. 281, 39249–39261 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Francis, L.I., Randell, J.C., Takara, T.J., Uchima, L. & Bell, S.P. Incorporation into the prereplicative complex activates the Mcm2–7 helicase for Cdc7-Dbf4 phosphorylation. Genes Dev. 23, 643–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Randell, J.C. et al. Mec1 is one of multiple kinases that prime the Mcm2–7 helicase for phosphorylation by Cdc7. Mol. Cell 40, 353–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heller, R.C. et al. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146, 80–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sheu, Y.J. & Stillman, B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463, 113–117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bailis, J.M., Bernard, P., Antonelli, R., Allshire, R.C. & Forsburg, S.L. Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nat. Cell Biol. 5, 1111–1116 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi, T.S., Basu, A., Bermudez, V., Hurwitz, J. & Walter, J.C. Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev. 22, 1894–1905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller, C.T., Gabrielse, C., Chen, Y.C. & Weinreich, M. Cdc7p-Dbf4p regulates mitotic exit by inhibiting Polo kinase. PLoS Genet. 5, e1000498 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Matos, J. et al. Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I. Cell 135, 662–678 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Sasanuma, H. et al. Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination. Genes Dev. 22, 398–410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonte, D. et al. Cdc7-Dbf4 kinase overexpression in multiple cancers and tumor cell lines is correlated with p53 inactivation. Neoplasia 10, 920–931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Montagnoli, A., Moll, J. & Colotta, F. Targeting cell division cycle 7 kinase: a new approach for cancer therapy. Clin. Cancer Res. 16, 4503–4508 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Montagnoli, A. et al. Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res. 64, 7110–7116 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Masai, H. & Arai, K. Dbf4 motifs: conserved motifs in activation subunits for Cdc7 kinases essential for S-phase. Biochem. Biophys. Res. Commun. 275, 228–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Ogino, K. et al. Bipartite binding of a kinase activator activates Cdc7-related kinase essential for S phase. J. Biol. Chem. 276, 31376–31387 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Kitamura, R. et al. Molecular mechanism of activation of human Cdc7 kinase: bipartite interaction with Dbf4/activator of S phase kinase (ASK) activation subunit stimulates ATP binding and substrate recognition. J. Biol. Chem. 286, 23031–23043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montagnoli, A. et al. Identification of Mcm2 phosphorylation sites by S-phase–regulating kinases. J. Biol. Chem. 281, 10281–10290 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Madhusudan et al. cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Protein Sci. 3, 176–187 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Russo, A.A., Jeffrey, P.D. & Pavletich, N.P. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3, 696–700 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H. & Goldsmith, E.J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Brown, N.R., Noble, M.E., Endicott, J.A. & Johnson, L.N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1, 438–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Wittelsberger, A., Thomas, B.E., Mierke, D.F. & Rosenblatt, M. Methionine acts as a “magnet” in photoaffinity crosslinking experiments. FEBS Lett. 580, 1872–1876 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Jones, D.R., Prasad, A.A., Chan, P.K. & Duncker, B.P. The Dbf4 motif C zinc finger promotes DNA replication and mediates resistance to genotoxic stress. Cell Cycle 9, 2018–2026 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Jeffrey, P.D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Montagnoli, A. et al. A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat. Chem. Biol. 4, 357–365 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Koltun, E.S. et al. Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorg. Med. Chem. Lett. 22, 3727–3731 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, J. et al. Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol. Cell 9, 1227–1240 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Sessa, F. et al. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol. Cell 18, 379–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Bayliss, R., Sardon, T., Vernos, I. & Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12, 851–862 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Chou, F.L. et al. PEA-15 binding to ERK1/2 MAPKs is required for its modulation of integrin activation. J. Biol. Chem. 278, 52587–52597 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Kannan, N., Haste, N., Taylor, S.S. & Neuwald, A.F. The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proc. Natl. Acad. Sci. USA 104, 1272–1277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hughes, S., Jenkins, V., Dar, M.J., Engelman, A. & Cherepanov, P. Transcriptional co-activator LEDGF interacts with Cdc7-activator of S-phase kinase (ASK) and stimulates its enzymatic activity. J. Biol. Chem. 285, 541–554 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Davies, T.G. et al. A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera. J. Mol. Biol. 367, 882–894 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  PubMed  Google Scholar 

  45. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  46. Long, F., Vagin, A.A., Young, P. & Murshudov, G.N. BALBES: a molecular-replacement pipeline. Acta Crystallogr. D Biol. Crystallogr. 64, 125–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Langer, G., Cohen, S.X., Lamzin, V.S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  PubMed  Google Scholar 

  49. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  51. Schüttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  PubMed  Google Scholar 

  52. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Moore for expert help in crystallization screening, J.F. Diffley, G.N. Maertens and V. Pye for critical reading of the manuscript and the staff of Diamond beamlines I02, I03 and I04 for assistance in data collection. This work was supported by UK Medical Research Council grant G0900116 (P.C.) and intramural funding from Cancer Research UK (P.C.).

Author information

Authors and Affiliations

Authors

Contributions

S.H. optimized expression constructs, purified proteins and assessed their in vitro kinase activities. S.H. and P.C. carried out crystallization screening, prepared crystals, collected X-ray diffraction data and solved and refined the structures. F.E., F.G.L. and A.C.W. evaluated small molecules using in vitro kinase assays. S.J.M. acquired and analyzed NMR spectra. A.D.F. and A.P.S. performed mass spectrometry analyses. P.C. and S.H. wrote the paper.

Corresponding author

Correspondence to Peter Cherepanov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 6407 kb)

Supplementary Video 1

Overall structure of the CDC7–DBF4 complex. (MOV 3990 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, S., Elustondo, F., Di Fonzo, A. et al. Crystal structure of human CDC7 kinase in complex with its activator DBF4. Nat Struct Mol Biol 19, 1101–1107 (2012). https://doi.org/10.1038/nsmb.2404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing