Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DVC1 (C1orf124) is a DNA damage–targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks

Abstract

Ubiquitin-mediated processes orchestrate critical DNA-damage signaling and repair pathways. We identify human DVC1 (C1orf124; Spartan) as a cell cycle–regulated anaphase-promoting complex (APC) substrate that accumulates at stalled replication forks. DVC1 recruitment to sites of replication stress requires its ubiquitin-binding UBZ domain and PCNA-binding PIP box motif but is independent of RAD18-mediated PCNA monoubiquitylation. Via a conserved SHP box, DVC1 recruits the ubiquitin-selective chaperone p97 to blocked replication forks, which may facilitate p97-dependent removal of translesion synthesis (TLS) DNA polymerase η (Pol η) from monoubiquitylated PCNA. DVC1 knockdown enhances UV light–induced mutagenesis, and depletion of human DVC1 or the Caenorhabditis elegans ortholog DVC-1 causes hypersensitivity to replication stress–inducing agents. Our findings establish DVC1 as a DNA damage–targeting p97 adaptor that protects cells from deleterious consequences of replication blocks and suggest an important role of p97 in ubiquitin-dependent regulation of TLS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recruitment of DVC1 to blocked replication forks.
Figure 2: Cell cycle–dependent regulation of DVC1 by APC–Cdh1.
Figure 3: Ubiquitin-regulated recruitment of DVC1 to stalled replisomes.
Figure 4: DVC1 recruitment to stalled replication forks requires PCNA binding but not PCNA ubiquitylation.
Figure 5: DVC1 is a p97 adaptor that promotes its recruitment to sites of replication stress.
Figure 6: DVC1 promotes bypass of DNA damage and cell survival by facilitating p97-dependent displacement of DNA Pol η from monoubiquitylated PCNA.
Figure 7: Loss of dvc-1 results in replication stress sensitivity in C. elegans.
Figure 8: Model of DVC1 function in cellular responses to replication blocks.

Similar content being viewed by others

References

  1. Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Jackson, S.P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ciccia, A. & Elledge, S.J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Loeb, L.A. & Monnat, R.J. Jr. DNA polymerases and human disease. Nat. Rev. Genet. 9, 594–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nat. Rev. Mol. Cell Biol. 11, 208–219 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Budzowska, M. & Kanaar, R. Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem. Biophys. 53, 17–31 (2009).

    Article  PubMed  Google Scholar 

  7. Friedberg, E.C. Suffering in silence: the tolerance of DNA damage. Nat. Rev. Mol. Cell Biol. 6, 943–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Sale, J.E., Lehmann, A.R. & Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol. 13, 141–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Ulrich, H.D. & Walden, H. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 11, 479–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Lehmann, A.R. et al. Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst.) 6, 891–899 (2007).

    Article  CAS  Google Scholar 

  12. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Bienko, M. et al. Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol. Cell 37, 396–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, T.T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat. Cell Biol. 8, 339–347 (2006).

    CAS  PubMed  Google Scholar 

  15. Al-Hakim, A. et al. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst.) 9, 1229–1240 (2010).

    Article  CAS  Google Scholar 

  16. Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Raman, M., Havens, C.G., Walter, J.C. & Harper, J.W. A genome-wide screen identifies p97 as an essential regulator of DNA damage-dependent CDT1 destruction. Mol. Cell 44, 72–84 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Acs, K. et al. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Nat. Struct. Mol. Biol. 18, 1345–1350 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Meerang, M. et al. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nat. Cell Biol. 13, 1376–1382 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Yeung, H.O. et al. Insights into adaptor binding to the AAA protein p97. Biochem. Soc. Trans. 36, 62–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat. Cell Biol. 5, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Centore, R.C., Yazinski, S.A., Tse, A. & Zou, L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol. Cell 46, 625–635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158–172 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Byun, T.S., Pacek, M., Yee, M.C., Walter, J.C. & Cimprich, K.A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peters, J.M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Sorensen, C.S. et al. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis. Mol. Cell Biol. 20, 7613–7623 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hofmann, K. Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair (Amst.) 8, 544–556 (2009).

    Article  CAS  Google Scholar 

  28. Bomar, M.G., Pai, M.T., Tzeng, S.R., Li, S.S. & Zhou, P. Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta. EMBO Rep. 8, 247–251 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moldovan, G.L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Havens, C.G. & Walter, J.C. Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase. Genes Dev. 25, 1568–1582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bekker-Jensen, S. & Mailand, N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst.) 9, 1219–1228 (2010).

    Article  CAS  Google Scholar 

  32. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Mouysset, J. et al. Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication. Proc. Natl. Acad. Sci. USA 105, 12879–12884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niimi, A. et al. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc. Natl. Acad. Sci. USA 105, 16125–16130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mullen, J.R., Chen, C.F. & Brill, S.J. Wss1 is a SUMO-dependent isopeptidase that interacts genetically with the Slx5-Slx8 SUMO-targeted ubiquitin ligase. Mol. Cell Biol. 30, 3737–3748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bekker-Jensen, S., Lukas, C., Melander, F., Bartek, J. & Lukas, J. Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J. Cell Biol. 170, 201–211 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lukas, C. et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J. 23, 2674–2683 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mailand, N. & Diffley, J.F. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122, 915–926 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Poulsen, M., Lukas, C., Lukas, J., Bekker-Jensen, S. & Mailand, N. Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J. Cell Biol. 197, 189–199 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parris, C.N. & Seidman, M.M. A signature element distinguishes sibling and independent mutations in a shuttle vector plasmid. Gene 117, 1–5 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Mailand, N., Bekker-Jensen, S., Bartek, J. & Lukas, J. Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol. Cell 23, 307–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Greiss, S., Hall, J., Ahmed, S. & Gartner, A. C. elegans SIR-2.1 translocation is linked to a proapoptotic pathway parallel to cep-1/p53 during DNA damage-induced apoptosis. Genes Dev. 22, 2831–2842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Michalski, A. et al. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell Proteomics 10, M111 011015 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Ramadan (University of Zurich), A. Lehmann (University of Sussex), R. Pepperkok and J. Simpson (European Molecular Biology Laboratory, Heidelberg), G. Alexandru (University of Dundee, UK), S. Fang (University of Maryland), M. Seidman (US National Institute on Aging), and members of the Caenorhabditis Genetics Center for providing reagents and worm strains, C. Doil and P. Menard for help with the initial screen for factors accumulating at laser-induced DNA damage, and J. Rouse and I. Dikic for communicating results before publication. This work was supported by grants from the Novo Nordisk Foundation, Danish Medical Research Council, the Danish Cancer Society, the Lundbeck Foundation, the Danish National Research Foundation and the European Research Council (Starting grant to R.P.).

Author information

Authors and Affiliations

Authors

Contributions

A.M., I.G.-S., K.K. and T.T. performed most of the experiments, supported by L.P., S.V.N., S.B.-J. and G.S. S.S. provided stable U2OS GFP–Pol η cells. P.B. and C.C. carried out MS experiments and analyzed data from MS experiments. C.L. and J.L. provided essential information and support for initiation of the project. S.B.-J. and N.M. supervised the project and analyzed data, with participation by R.H.-P. and R.P.; N.M. wrote the paper.

Corresponding author

Correspondence to Niels Mailand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 3114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosbech, A., Gibbs-Seymour, I., Kagias, K. et al. DVC1 (C1orf124) is a DNA damage–targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nat Struct Mol Biol 19, 1084–1092 (2012). https://doi.org/10.1038/nsmb.2395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing