Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription

Abstract

Dosage compensation in mammals occurs at two levels. In addition to balancing X-chromosome dosage between males and females via X inactivation, mammals also balance dosage of Xs and autosomes. It has been proposed that X-autosome equalization occurs by upregulation of Xa (active X). To investigate mechanism, we perform allele-specific ChIP-seq for chromatin epitopes and analyze RNA-seq data. The hypertranscribed Xa demonstrates enrichment of active chromatin marks relative to autosomes. We derive predictive models for relationships among Pol II occupancy, active mark densities and gene expression, and we suggest that Xa upregulation involves increased transcription initiation and elongation. Enrichment of active marks on Xa does not scale proportionally with transcription output, a disparity explained by nonlinear quantitative dependencies among active histone marks, Pol II occupancy and transcription. Notably, the trend of nonlinear upregulation also occurs on autosomes. Thus, Xa upregulation involves combined increases of active histone marks and Pol II occupancy, without invoking X-specific dependencies between chromatin states and transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allele-specific ChIP-seq.
Figure 2: Distributions of coverage densities for Pol II and active histone modifications on X chromosome and autosomes.
Figure 3: Relationships between levels of gene expression, Pol II and active histone modifications.
Figure 4: Autosomal relationships between active histone modifications, Pol II and expression are predictive of X-linked gene expression.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Sequence Read Archive

References

  1. Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Current Biol. 6, 149–162 (1996).

    Article  CAS  Google Scholar 

  2. Ohno, S. More about the mammalian X chromosome. Lancet 2, 152–153 (1962).

    Article  CAS  PubMed  Google Scholar 

  3. Ohno, S. A phylogenetic view of the X-chromosome in man. Ann. Genet. 8, 3–8 (1965).

    CAS  PubMed  Google Scholar 

  4. Ohno, S. Sex Chromosomes and Sex Linked Genes (Springer Verlag, Berlin, 1967).

  5. Lyon, M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    Article  CAS  PubMed  Google Scholar 

  6. Lyon, M.F. Possible mechanisms of X chromosome inactivation. Nat. New Biol. 232, 229–232 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Brockdorff, N. et al. High-density molecular map of the central span of the mouse X chromosome. Genomics 10, 17–22 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Brown, C.J. et al. Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349, 82–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J. & Lee, J.T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, H. et al. Dosage compensation in the mouse balances up-regulation and silencing of X-linked genes. PLoS Biol. 5, e326 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nguyen, D.K. & Disteche, C.M. Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38, 47–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Xiong, Y. et al. RNA sequencing shows no dosage compensation of the active X-chromosome. Nat. Genet. 42, 1043–1047 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Deng, X. et al. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat. Genet. 43, 1179–1185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, F., Babak, T., Shendure, J. & Disteche, C.M. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res. 20, 614–622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mikkelsen, T.S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marks, H. et al. High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res. 19, 1361–1373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Neill, L.P. et al. X-linked genes in female embryonic stem cells carry an epigenetic mark prior to the onset of X inactivation. Hum. Mol. Genet. 12, 1783–1790 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. O'Neill, L.P., Spotswood, H.T., Fernando, M. & Turner, B.M. Differential loss of histone H3 isoforms mono-, di- and tri-methylated at lysine 4 during X-inactivation in female embryonic stem cells. Biol. Chem. 389, 365–370 (2008).

    CAS  PubMed  Google Scholar 

  23. Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Schneider, R. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat. Cell Biol. 6, 73–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Keane, T.M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karlic, R., Chung, H.R., Lasserre, J., Vlahovicek, K. & Vingron, M. Histone modification levels are predictive for gene expression. Proc. Natl. Acad. Sci. USA 107, 2926–2931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Larschan, E. et al. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471, 115–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vaquerizas, J.M. et al. Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet. 6, e1000846 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Payer, B. & Lee, J.T. X chromosome dosage compensation: how mammals keep the balance. Annu. Rev. Genet. 42, 733–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Lucchesi, J.C., Kelly, W.G. & Panning, B. Chromatin remodeling in dosage compensation. Annu. Rev. Genet. 39, 615–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Cline, T.W. & Meyer, B.J. Vive la difference: males vs females in flies vs worms. Annu. Rev. Genet. 30, 637–702 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Bhadra, M.P., Bhadra, U., Kundu, J. & Birchler, J.A. Gene expression analysis of the function of the male-specific lethal complex in Drosophila. Genetics 169, 2061–2074 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmer, M.J., Richman, R., Richter, L. & Kuroda, M.I. Sex-specific regulation of the male-specific lethal-1 dosage compensation gene in Drosophila. Genes Dev. 8, 698–706 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Gu, W., Szauter, P. & Lucchesi, J.C. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev. Genet. 22, 56–64 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Lyman, L.M., Copps, K., Rastelli, L., Kelley, R.L. & Kuroda, M.I. Drosophila male-specific lethal-2 protein: structure/function analysis and dependence on MSL-1 for chromosome association. Genetics 147, 1743–1753 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Meller, V.H., Wu, K.H., Roman, G., Kuroda, M.I. & Davis, R.L. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88, 445–457 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Amrein, H. & Axel, R. Genes expressed in neurons of adult male Drosophila. Cell 88, 459–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Gelbart, M.E. & Kuroda, M.I. Drosophila dosage compensation: a complex voyage to the X chromosome. Development 136, 1399–1410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A. & Lucchesi, J.C. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16, 2054–2060 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Akhtar, A. & Becker, P.B. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell 5, 367–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, E.R. et al. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol. Cell. Biol. 20, 312–318 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prestel, M., Feller, C., Straub, T., Mitlohner, H. & Becker, P.B. The activation potential of MOF is constrained for dosage compensation. Mol. Cell 38, 815–826 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Alekseyenko, A.A., Larschan, E., Lai, W.R., Park, P.J. & Kuroda, M.I. High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev. 20, 848–857 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gilfillan, G.D. et al. Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev. 20, 858–870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Legube, G., McWeeney, S.K., Lercher, M.J. & Akhtar, A. X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. Genes Dev. 20, 871–883 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Birchler, J. et al. Re-evaluation of the function of the male specific lethal complex in Drosophila. J. Genet. Genomics [Yi chuan xue bao] 38, 327–332 (2011).

    Article  CAS  Google Scholar 

  47. Kim, J., Lu, X. & Stubbs, L. Zim1, a maternally expressed mouse Kruppel-type zinc-finger gene located in proximal chromosome 7. Hum. Mol. Genet. 8, 847–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Kuroiwa, Y. et al. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nat. Genet. 12, 186–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Brown, M. et al. A recombinant murine retrovirus for simian virus 40 large T cDNA transforms mouse fibroblasts to anchorage-independent growth. J. Virol. 60, 290–293 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Takahashi, K., Saitoh, S. & Yanagida, M. Application of the chromatin immunoprecipitation method to identify in vivo protein-DNA associations in fission yeast. Sci. STKE 2000, pl1 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to members of Lee laboratory for valuable discussions, to Y. Jeon for F1 mus/cast female MEFs and to B. Chapman, M. Borowsky and T. Ohsumi of the Bioinformatics Core Facility (Department of Molecular Biology, Massachusetts General Hospital (MGH)) for their suggestions for ChIP-Seq analysis. This work was supported by the MGH ECOR Medical Discovery Fund (E.Y.), the Deutsche Forschungsgemeinschaft (S.F.P.) and the US National Institutes of Health (RO1-GM090278, J.T.L.). J.T.L. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

E.Y. and J.T.L. designed the research; E.Y. and S.F.P. conducted ChIP-seq experiments; R.I.S. performed the bioinformatics analysis; S.F.P. designed the allele-specific ChIP-seq strategy and performed allele-specific alignments; E.Y., R.I.S., S.F.P., and J.T.L. analyzed the data; and E.Y., R.I.S., and J.T.L. wrote the paper.

Corresponding author

Correspondence to Jeannie T Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–3 (PDF 15989 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildirim, E., Sadreyev, R., Pinter, S. et al. X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription. Nat Struct Mol Biol 19, 56–61 (2012). https://doi.org/10.1038/nsmb.2195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing