Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome

Abstract

ATR-X (alpha-thalassemia/mental retardation, X-linked) syndrome is a human congenital disorder that causes severe intellectual disabilities. Mutations in the ATRX gene, which encodes an ATP-dependent chromatin-remodeler, are responsible for the syndrome. Approximately 50% of the missense mutations in affected persons are clustered in a cysteine-rich domain termed ADD (ATRX-DNMT3-DNMT3L, ADDATRX), whose function has remained elusive. Here we identify ADDATRX as a previously unknown histone H3–binding module, whose binding is promoted by lysine 9 trimethylation (H3K9me3) but inhibited by lysine 4 trimethylation (H3K4me3). The cocrystal structure of ADDATRX bound to H31–15K9me3 peptide reveals an atypical composite H3K9me3-binding pocket, which is distinct from the conventional trimethyllysine-binding aromatic cage. Notably, H3K9me3-pocket mutants and ATR-X syndrome mutants are defective in both H3K9me3 binding and localization at pericentromeric heterochromatin; thus, we have discovered a unique histone-recognition mechanism underlying the ATR-X etiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methylation at K4 and K9 inversely regulates interaction between ADDATRX and histone H3.
Figure 2: Atrx is recruited to PCH by Suv39h1- and Suv39h2-mediated H3K9 trimethylation.
Figure 3: Molecular basis for H3K9me3 recognition by ADDATRX.
Figure 4: Effect of H3 sequence context on ADDATRX binding.
Figure 5: Mutations in ADDATRX compromise histone binding and targeting of ATRX onto PCH.
Figure 6: Model of the mechanism underlying ATR-X syndrome that is caused by the mutations in ADDATRX.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).

    Article  CAS  Google Scholar 

  2. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    Article  CAS  Google Scholar 

  3. Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99 (2006).

    Article  CAS  Google Scholar 

  4. Peña, P.V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100–103 (2006).

    Article  Google Scholar 

  5. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  Google Scholar 

  6. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  Google Scholar 

  7. Berger, S.L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  Google Scholar 

  8. van Bokhoven, H. & Kramer, J.M. Disruption of the epigenetic code: an emerging mechanism in mental retardation. Neurobiol. Dis. 39, 3–12 (2010).

    Article  CAS  Google Scholar 

  9. Iwase, S. & Shi, Y. Histone and DNA modifications in mental retardation. Prog. Drug Res. 67, 147–173 (2011).

    CAS  PubMed  Google Scholar 

  10. Ropers, H.H. & Hamel, B.C. X-linked mental retardation. Nat. Rev. Genet. 6, 46–57 (2005).

    Article  CAS  Google Scholar 

  11. Gibbons, R.J., Picketts, D.J., Villard, L. & Higgs, D.R. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 80, 837–845 (1995).

    Article  CAS  Google Scholar 

  12. Gibbons, R. Alpha thalassaemia-mental retardation, X linked. Orphanet J. Rare Dis. 1, 15 (2006).

    Article  Google Scholar 

  13. Gibbons, R.J. et al. Mutations in the chromatin-associated protein ATRX. Hum. Mutat. 29, 796–802 (2008).

    Article  CAS  Google Scholar 

  14. Tang, J. et al. A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J. Biol. Chem. 279, 20369–20377 (2004).

    Article  CAS  Google Scholar 

  15. Ooi, S.K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    Article  CAS  Google Scholar 

  16. Otani, J. et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep. 10, 1235–1241 (2009).

    Article  CAS  Google Scholar 

  17. Zhang, Y. et al. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 38, 4246–4253 (2010).

    Article  CAS  Google Scholar 

  18. Goldberg, A.D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  Google Scholar 

  19. McDowell, T.L. et al. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc. Natl. Acad. Sci. USA 96, 13983–13988 (1999).

    Article  CAS  Google Scholar 

  20. Allshire, R.C. & Karpen, G.H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet. 9, 923–937 (2008).

    Article  CAS  Google Scholar 

  21. Pidoux, A.L. & Allshire, R.C. The role of heterochromatin in centromere function. Phil. Trans. R. Soc. Lond. B 360, 569–579 (2005).

    Article  CAS  Google Scholar 

  22. Sullivan, B.A. & Karpen, G.H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 11, 1076–1083 (2004).

    Article  CAS  Google Scholar 

  23. Martens, J.H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  Google Scholar 

  24. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  Google Scholar 

  25. O'Carroll, D. et al. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell. Biol. 20, 9423–9433 (2000).

    Article  CAS  Google Scholar 

  26. Rice, J.C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1598 (2003).

    Article  CAS  Google Scholar 

  27. Nan, X. et al. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc. Natl. Acad. Sci. USA 104, 2709–2714 (2007).

    Article  CAS  Google Scholar 

  28. Lechner, M.S., Schultz, D.C., Negorev, D., Maul, G.G. & Rauscher, F.J. III. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem. Biophys. Res. Commun. 331, 929–937 (2005).

    Article  CAS  Google Scholar 

  29. Bérubé, N.G., Smeenk, C.A. & Picketts, D.J. Cell cycle-dependent phosphorylation of the ATRX protein correlates with changes in nuclear matrix and chromatin association. Hum. Mol. Genet. 9, 539–547 (2000).

    Article  Google Scholar 

  30. Xue, Y. et al. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc. Natl. Acad. Sci. USA 100, 10635–10640 (2003).

    Article  CAS  Google Scholar 

  31. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  32. Maurer-Stroh, S. et al. The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem. Sci. 28, 69–74 (2003).

    Article  CAS  Google Scholar 

  33. Collins, R.E. et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat. Struct. Mol. Biol. 15, 245–250 (2008).

    Article  CAS  Google Scholar 

  34. Jacobs, S.A. et al. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J. 20, 5232–5241 (2001).

    Article  CAS  Google Scholar 

  35. Schalch, T. et al. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol. Cell 34, 36–46 (2009).

    Article  CAS  Google Scholar 

  36. Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).

    Article  CAS  Google Scholar 

  37. Argentaro, A. et al. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX. Proc. Natl. Acad. Sci. USA 104, 11939–11944 (2007).

    Article  CAS  Google Scholar 

  38. Allshire, R.C., Nimmo, E.R., Ekwall, K., Javerzat, J.P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9, 218–233 (1995).

    Article  CAS  Google Scholar 

  39. Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505 (2004).

    Article  CAS  Google Scholar 

  40. Ritchie, K. et al. Loss of ATRX leads to chromosome cohesion and congression defects. J. Cell Biol. 180, 315–324 (2008).

    Article  CAS  Google Scholar 

  41. Bérubé, N.G. et al. The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J. Clin. Invest. 115, 258–267 (2005).

    Article  Google Scholar 

  42. Chen, T. et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat. Genet. 39, 391–396 (2007).

    Article  CAS  Google Scholar 

  43. Ha, G.H. et al. Mitotic catastrophe is the predominant response to histone acetyltransferase depletion. Cell Death Differ. 16, 483–497 (2009).

    Article  CAS  Google Scholar 

  44. Wong, L.H. et al. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 20, 351–360 (2010).

    Article  CAS  Google Scholar 

  45. Lewis, P.W., Elsaesser, S.J., Noh, K.M., Stadler, S.C. & Allis, C.D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl. Acad. Sci. USA 107, 14075–14080 (2010).

    Article  CAS  Google Scholar 

  46. Drané, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).

    Article  Google Scholar 

  47. Zeng, L. et al. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466, 258–262 (2010).

    Article  CAS  Google Scholar 

  48. Tsai, W.-W. TRIM24 links recognition of a non-canonical histone signature to breast cancer. Nature 468, 927–932 (2010).

    Article  CAS  Google Scholar 

  49. Schnitzler, G.R. Isolation of histones and nucleosome cores from mammalian cells. Curr. Protoc. Mol. Biol. 21, 21.5.1–21.5.12 (2001).

    Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  51. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  52. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  53. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  55. Iwase, S. et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077–1088 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staffs of beamlines X-29 at the Brookhaven National Laboratory, 24IDC at the Advanced Photon Source and 3W1A at the Beijing Synchrotron Radiation Facility (BSRF) for their assistance in the synchrotron data collection, with special thanks to Y. Dong of BSRF. We thank A. Vaquero (Bellvitge Institute for Biomedical Research) and S. Minucci (European Institute of Oncology) for providing the Suv39h1 and Suv39h2 double knockout cells and SUV39H1 expression vectors. Anti-MeCP2 antiserum was a generous gift from M. Greenberg (Harvard Medical School, HMS). We are grateful to A. Ruthenburg (Rockefeller University) for providing histone H3 peptides and to L. Liang (Memorial Sloan-Kettering Cancer Center), Y.Y. Chen (Institute of Biophysics, Chinese Academy of Sciences) and M. Geigges (Children's Hospital Boston) for experimental help. We express great appreciation to C. Richardson, M. Takahashi at HMS and individual members of the Shi, Li and Patel laboratories for helpful discussions. S.I. was a Jane Coffin Childs Memorial Fund Postdoctoral Fellowship Award recipient and is currently supported by the Japan Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad. This work was supported by grants GM071004 and GM058012 from the US National Institutes of Health (Y.S.) and by the Starr Foundation, the Leukemia and Lymphoma Society, the Abby Rockefeller Mauze Trust and the Maloris Foundation (D.J. Patel); the Canadian Institutes of Health Research (D.J. Picketts); the Major State Basic Research Development Program in China (grant # 2011CB965300, H.L.) and by Tsinghua University 985 Phase II funds (H.L.).

Author information

Authors and Affiliations

Authors

Contributions

S.I., H.L., D.J. Patel and Y.S. participated in the experimental design, contributed to the concept and wrote the paper. S.I. did pulldown assays, SPR assays and localization analysis. B.X. crystallized the ADDATRX–H3K9me3 complex and participated in calorimetric assays. H.L. carried out crystallographic and calorimetric studies. P.W.L., T.R. and J.C.C. carried out or helped with pulldown assays. S.G. helped with measuring SPR. C.D.A. supervised pulldown assays. D.J. Picketts provided important reagents and participated in manuscript preparation.

Corresponding authors

Correspondence to Dinshaw J Patel, Haitao Li or Yang Shi.

Ethics declarations

Competing interests

Y.S. is a cofounder of Constellation Pharmaceuticals. D.J. Patel is on the Epigenetics Advisory Board of Epinova-Glaxo. The remaining authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1 and Supplementary Methods (PDF 13312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwase, S., Xiang, B., Ghosh, S. et al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. Nat Struct Mol Biol 18, 769–776 (2011). https://doi.org/10.1038/nsmb.2062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing