Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity

Abstract

Mutations in TARDBP, encoding TAR DNA-binding protein-43 (TDP-43), are associated with TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We compared wild-type TDP-43 and an ALS-associated mutant TDP-43 in vitro and in vivo. The A315T mutant enhances neurotoxicity and the formation of aberrant TDP-43 species, including protease-resistant fragments. The C terminus of TDP-43 shows sequence similarity to prion proteins. Synthetic peptides flanking residue 315 form amyloid fibrils in vitro and cause neuronal death in primary cultures. These data provide evidence for biochemical similarities between TDP-43 and prion proteins, raising the possibility that TDP-43 derivatives may cause spreading of the disease phenotype among neighboring neurons. Our work also suggests that decreasing the abundance of neurotoxic TDP-43 species, enhancing degradation or clearance of such TDP-43 derivatives and blocking the spread of the disease phenotype may have therapeutic potential for TDP-43 proteinopathies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of A315T mutant hTDP-43 in motor neurons (MNs) leads to enhanced axonal damage and more severe impairment of locomotive function.
Figure 2: Expression of the A315T mutant causes more severe motor neuron (MN) damage.
Figure 3: FTLD-TDP brain samples show abnormal TDP-43–immunoreactive species.
Figure 4: Biochemical characterization of TDP-43–immunoreactive species.
Figure 5: Cells expressing A315T TDP-43 show high-molecular-weight phosphorylated protein species that are resistant to heat, DTT and urea and produce fragments partially resistant to protease K (PK) treatment.
Figure 6: Sequence features and structural prediction of the C-terminal fragments of TDP-43.
Figure 7: Synthetic TDP-43 peptides (wild-type or A315T mutant, Gln286–Gln331) form fibrils in vitro.
Figure 8: The A315T mutant synthetic TDP-43 peptide causes enhanced neurotoxicity as compared to the wild-type peptide in primary cortical neuronal cultures.

Similar content being viewed by others

References

  1. Harvey, R.J., Skelton-Robinson, M. & Rossor, M.N. The prevalence and causes of dementia in people under the age of 65 years. J. Neurol. Neurosurg. Psychiatry 74, 1206–1209 (2003).

    Article  CAS  Google Scholar 

  2. Mackenzie, I.R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    Article  Google Scholar 

  3. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article  CAS  Google Scholar 

  4. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  Google Scholar 

  5. Kwiatkowski, T.J. Jr. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  Google Scholar 

  6. Neumann, M. et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132, 2922–2931 (2009).

    Article  Google Scholar 

  7. Neumann, M., Kwong, L.K., Sampathu, D.M., Trojanowski, J.Q. & Lee, V.M. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch. Neurol. 64, 1388–1394 (2007).

    Article  Google Scholar 

  8. Buratti, E. & Baralle, F.E. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front. Biosci. 13, 867–878 (2008).

    Article  CAS  Google Scholar 

  9. Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D.W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

    Article  CAS  Google Scholar 

  10. Wang, H.Y., Wang, I.F., Bose, J. & Shen, C.K. Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83, 130–139 (2004).

    Article  CAS  Google Scholar 

  11. Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 64, 60–70 (2008).

    Article  CAS  Google Scholar 

  12. Igaz, L.M. et al. Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J. Biol. Chem. 284, 8516–8524 (2009).

    Article  CAS  Google Scholar 

  13. Igaz, L.M. et al. Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am. J. Pathol. 173, 182–194 (2008).

    Article  CAS  Google Scholar 

  14. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  Google Scholar 

  15. Wegorzewska, I., Bell, S., Cairns, N.J., Miller, T.M. & Baloh, R.H. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl. Acad. Sci. USA 106, 18809–18814 (2009).

    Article  CAS  Google Scholar 

  16. Wils, H. et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc. Natl. Acad. Sci. USA 107, 3858–3863 (2010).

    Article  CAS  Google Scholar 

  17. Xu, Y.F. et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J. Neurosci. 30, 10851–10859 (2010).

    Article  CAS  Google Scholar 

  18. Zhou, H. et al. Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet. 6, e1000887 (2010).

    Article  Google Scholar 

  19. Barmada, S.J. et al. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 30, 639–649 (2010).

    Article  CAS  Google Scholar 

  20. Li, Y. et al. A Drosophila model for TDP-43 proteinopathy. Proc. Natl. Acad. Sci. USA 107, 3169–3174 (2010).

    Article  CAS  Google Scholar 

  21. Bagriantsev, S.N., Kushnirov, V.V. & Liebman, S.W. Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol. 412, 33–48 (2006).

    Article  CAS  Google Scholar 

  22. Prospéri, M.T., Ferbus, D., Karczinski, I. & Goubin, G. A human cDNA corresponding to a gene overexpressed during cell proliferation encodes a product sharing homology with amoebic and bacterial proteins. J. Biol. Chem. 268, 11050–11056 (1993).

    PubMed  Google Scholar 

  23. Zhou, Y. et al. Presenilin-1 protects against neuronal apoptosis caused by its interacting protein PAG. Neurobiol. Dis. 9, 126–138 (2002).

    Article  CAS  Google Scholar 

  24. Gasteiger, E. et al. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).

    Article  CAS  Google Scholar 

  25. Bhaskaran, R. & Ponnuswamy, P.K. Dynamics of amino acid residues in globular proteins. Int. J. Pept. Protein Res. 24, 180–191 (1984).

    Article  CAS  Google Scholar 

  26. Deléage, G. & Roux, B. An algorithm for protein secondary structure prediction based on class prediction. Protein Eng. 1, 289–294 (1987).

    Article  Google Scholar 

  27. Morris, A.L., MacArthur, M.W., Hutchinson, E.G. & Thornton, J.M. Stereochemical quality of protein structure coordinates. Proteins 12, 345–364 (1992).

    Article  CAS  Google Scholar 

  28. Nielsen, L. et al. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40, 6036–6046 (2001).

    Article  CAS  Google Scholar 

  29. Zhu, L., Zhang, X.J., Wang, L.Y., Zhou, J.M. & Perrett, S. Relationship between stability of folding intermediates and amyloid formation for the yeast prion Ure2p: a quantitative analysis of the effects of pH and buffer system. J. Mol. Biol. 328, 235–254 (2003).

    Article  CAS  Google Scholar 

  30. Cheng, J.S. et al. Collagen VI protects neurons against Aβ toxicity. Nat. Neurosci. 12, 119–121 (2009).

    Article  CAS  Google Scholar 

  31. Lorenzo, A. & Yankner, B.A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA 91, 12243–12247 (1994).

    Article  CAS  Google Scholar 

  32. Forloni, G. et al. Neurotoxicity of a prion protein fragment. Nature 362, 543–546 (1993).

    Article  CAS  Google Scholar 

  33. Cushman, M., Johnson, B.S., King, O.D., Gitler, A.D. & Shorter, J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J. Cell Sci. 123, 1191–1201 (2010).

    Article  CAS  Google Scholar 

  34. Johnson, B.S., McCaffery, J.M., Lindquist, S. & Gitler, A.D. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc. Natl. Acad. Sci. USA 105, 6439–6444 (2008).

    Article  CAS  Google Scholar 

  35. Nonaka, T., Kametani, F., Arai, T., Akiyama, H. & Hasegawa, M. Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum. Mol. Genet. 18, 3353–3364 (2009).

    Article  CAS  Google Scholar 

  36. Zhang, Y.J. et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc. Natl. Acad. Sci. USA 106, 7607–7612 (2009).

    Article  CAS  Google Scholar 

  37. Johnson, B.S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

    Article  CAS  Google Scholar 

  38. Corrado, L. et al. High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum. Mutat. 30, 688–694 (2009).

    Article  CAS  Google Scholar 

  39. Kametani, F. et al. Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem. Biophys. Res. Commun. 382, 405–409 (2009).

    Article  CAS  Google Scholar 

  40. Buratti, E. & Baralle, F.E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001).

    Article  CAS  Google Scholar 

  41. Feiguin, F. et al. Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett. 583, 1586–1592 (2009).

    Article  CAS  Google Scholar 

  42. Lu, Y., Ferris, J. & Gao, F.B. Frontotemporal dementia and amyotrophic lateral sclerosis-associated disease protein TDP-43 promotes dendritic branching. Mol. Brain 2, 30 (2009).

    Article  Google Scholar 

  43. Kraemer, B.C. et al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol. 119, 409–419 (2010).

    Article  CAS  Google Scholar 

  44. Gendron, T.F., Josephs, K.A. & Petrucelli, L. Transactive response DNA-binding protein 43 (TDP-43): mechanisms of neurodegeneration. Neuropathol. Appl. Neurobiol. 36, 97–112 (2010).

    Article  CAS  Google Scholar 

  45. Sleegers, K., Cruts, M. & Van Broeckhoven, C. Molecular pathways of frontotemporal lobar degeneration. Annu. Rev. Neurosci. 33, 71–88 (2010).

    Article  CAS  Google Scholar 

  46. Ash, P.E. et al. Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum. Mol. Genet. 19, 3206–3218 (2010).

    Article  CAS  Google Scholar 

  47. Bagriantsev, S. & Liebman, S.W. Specificity of prion assembly in vivo. [PSI+] and [PIN+] form separate structures in yeast. J. Biol. Chem. 279, 51042–51048 (2004).

    Article  CAS  Google Scholar 

  48. Gao, X. et al. Progranulin promotes neurite outgrowth and neuronal differentiation by regulating GSK-3β. Protein Cell 1, 552–562 (2010).

    Article  CAS  Google Scholar 

  49. Yuasa-Kawada, J., Kinoshita-Kawada, M., Wu, G., Rao, Y. & Wu, J.Y. Midline crossing and Slit responsiveness of commissural axons require USP33. Nat. Neurosci. 12, 1087–1089 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Baralle, E. Buratti, B. Cui, D. Kuo, N. Jayaram, Y. Li, M. Mishra, S. Perrett, M.-Y. Shen, M.-J. Zhang and T. Siddique for providing invaluable suggestions and reagents and for critical reading of the manuscript. We thank members of the Wu laboratory for stimulating discussions and suggestions. We thank L. Guo and L. Wang for technical assistance and A. Joselin for help in the early stage of the work. W.G. (grant 2009CB825402) and Y.C., H.Y. and Q.X. (grant 2010CB529603) are supported by the Ministry of Science and Technology (MOST) China 973 Project . J.Y.W. is supported by funds from Northwestern University and the Chinese Academy of Science (CAS). Y.Y. and C.W. are supported by CAS and MOST. We also thank the US National Institutes of Health (grant AG13854 to M.M. and E.H.B.) for support.

Author information

Authors and Affiliations

Authors

Contributions

J.Y.W., W.G., X.Z., K.F. and E.J.R. designed the study; W.G., Y.C., X.Z., A.K., P.R., X.C., E.J.R., M.Y., L.Z., J.L., M.X., Y.Y., C.W., D.Z., K.F., E.J.R. and J.Y.W. performed the experiments and analyzed the data; H.Y., L.Z., J.L., Y.S., K.F., Q.X. and J.Y.W. supervised the experiments and discussed and analyzed the data; E.H.B. and M.M. provided crucial tissue samples and revised the manuscript; W.G., E.J.R. and J.Y.W. wrote the paper.

Corresponding authors

Correspondence to Qi Xu or Jane Y Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–7 (PDF 4395 kb)

Supplementary Movie 1

Molecular dynamics simulation suggests that the 46mer TDP-43 peptides adopt multiple conformations including collapsed globular conformation at the N-terminal half and extended β-sheet conformation at the C-terminal region, in agreement with the Protscale analyses (Fig. 7). Molecular dynamics simulations were carried out on Wt and A315T mutant TDP-43 synthetic peptide (Q286-Q331) using TINKER, a software tool for molecular design3. The force field used in this molecular dynamics simulation was CHARMM-19, in combination with a statistical potential of mean force DOPE (discrete optimized protein energy)4. Non-bonded forces (electrostatic and van der Waals) were truncated at 5Å. After the TDP peptide was energy minimized and equilibrated for 100-ps with 1-fs time step, ten (peptide dimer) or thirty (monomer) independent 100-ps trajectories were produced using different random initial conditions. The canonical ensemble simulations were kept at a constant temperature of 300K. The amino-termini of both peptides are at the lower right corner, with the carboxyl termini at the upper left corner. The backbones of the wild type and A315T mutant peptides are shown in green and blue ribbons respectively with corresponding Ala315 or Thr315 residues marked in red. (MPG 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Chen, Y., Zhou, X. et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18, 822–830 (2011). https://doi.org/10.1038/nsmb.2053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing