Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The client protein p53 adopts a molten globule–like state in the presence of Hsp90

Abstract

It is not currently known in what state (folded, unfolded or alternatively folded) client proteins interact with the chaperone Hsp90. We show that one client, the p53 DNA-binding domain, undergoes a structural change in the presence of Hsp90 to adopt a molten globule–like state. Addition of one- and two-domain constructs of Hsp90, as well as the full-length three-domain protein, to isotopically labeled p53 led to reduction in NMR signal intensity throughout p53, particularly in its central β-sheet. This reduction seems to be associated with a change of structure of p53 without formation of a distinct complex with Hsp90. Fluorescence and hydrogen-exchange measurements support a loosening of the structure of p53 in the presence of Hsp90 and its domains. We propose that Hsp90 interacts with p53 by multiple transient interactions, forming a dynamic heterogeneous manifold of conformational states that resembles a molten globule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of domains of Hsp90 and p53.
Figure 2: 1H-15N spectra of 15N-labeled p53 with added Hsp90.
Figure 3: p53 resonance attenuation by Hsp90 proteins.
Figure 4: Schematic of model for NMR titration results.
Figure 5: ANS fluorescence spectra and H/D exchange.

Similar content being viewed by others

References

  1. Pratt, W.B. & Toft, D.O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360 (1997).

    CAS  Google Scholar 

  2. Richter, K. & Buchner, J. Hsp90: chaperoning signal transduction. J. Cell. Physiol. 188, 281–290 (2001).

    Article  CAS  Google Scholar 

  3. Terasawa, K., Minami, M. & Minami, Y. Constantly updated knowledge of Hsp90. J. Biochem. 137, 443–447 (2005).

    Article  CAS  Google Scholar 

  4. Shiau, A.K., Harris, S.F., Southworth, D.R. & Agard, D.A. Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127, 329–340 (2006).

    Article  CAS  Google Scholar 

  5. Ali, M.M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    Article  CAS  Google Scholar 

  6. Vaughan, C.K. et al. Structure of an Hsp90–Cdc37–Cdk4 complex. Mol. Cell 23, 697–707 (2006).

    Article  CAS  Google Scholar 

  7. Hawle, P. et al. The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol. Cell. Biol. 26, 8385–8395 (2006).

    Article  CAS  Google Scholar 

  8. Soussi, T., Legros, Y., Lubin, R., Ory, K. & Schlichtholz, B. Multifactorial analysis of p53 alteration in human cancer: a review. Int. J. Cancer 57, 1–9 (1994).

    Article  CAS  Google Scholar 

  9. Vogelstein, B., Lane, D. & Levine, A.J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  10. Blagosklonny, M.V., Toretsky, J., Bohen, S. & Neckers, L. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Natl. Acad. Sci. USA 93, 8379–8383 (1996).

    Article  CAS  Google Scholar 

  11. Whitesell, L., Sutphin, P.D., Pulcini, E.J., Martinez, J.D. & Cook, P.H. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol. Cell. Biol. 18, 1517–1524 (1998).

    Article  CAS  Google Scholar 

  12. Müller, L., Schaupp, A., Walerych, D., Wegele, H. & Büchner, J. Hsp90 regulates the activity of wild type p53 under physiological and elevated temperatures. J. Biol. Chem. 279, 48846–48854 (2004).

    Article  Google Scholar 

  13. Cañadillas, J.M.P. et al. Solution structure of p53 core domain: Structural basis for its instability. Proc. Natl. Acad. Sci. USA 103, 2109–2114 (2006).

    Article  Google Scholar 

  14. Mulder, F.A.A., Ayed, A., Yang, D.W., Arrowsmith, C.H. & Kay, L.E. Assignment of 1HN, 15N, 13Cα, 13CO and 13Cβ resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy. J. Biomol. NMR 18, 173–176 (2000).

    Article  CAS  Google Scholar 

  15. Martinez-Yamout, M.A. et al. Localization of sites of interaction between p23 and Hsp90 in solution. J. Biol. Chem. 281, 14457–14464 (2006).

    Article  CAS  Google Scholar 

  16. Eliezer, D., Jennings, P.A., Dyson, H.J. & Wright, P.E. Populating the equilibrium molten globule state of apomyoglobin under conditions suitable for characterization by NMR. FEBS Lett. 417, 92–96 (1997).

    Article  CAS  Google Scholar 

  17. Eliezer, D., Chung, J., Dyson, H.J. & Wright, P.E. Native and non-native structure and dynamics in the pH 4 intermediate of apomyoglobin. Biochemistry 39, 2894–2901 (2000).

    Article  CAS  Google Scholar 

  18. Baum, J., Dobson, C.M., Evans, P.A. & Hanley, C. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig α-lactalbumin. Biochemistry 28, 7–13 (1989).

    Article  CAS  Google Scholar 

  19. Redfield, C., Smith, R.A.G. & Dobson, C.M. Structural characterization of a highly-ordered 'molten globule' at low pH. Nat. Struct. Biol. 1, 23–29 (1994).

    Article  CAS  Google Scholar 

  20. Schulman, B.A., Kim, P.S., Dobson, C.M. & Redfield, C. A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat. Struct. Biol. 4, 630–634 (1997).

    Article  CAS  Google Scholar 

  21. Greene, L.H., Wijesinha-Bettoni, R. & Redfield, C. Characterization of the molten globule of human serum retinol-binding protein using NMR spectroscopy. Biochemistry 45, 9475–9484 (2006).

    Article  CAS  Google Scholar 

  22. Cattoni, D.I., Kaufman, S.B. & Gonzalez Flecha, F.L. Kinetics and thermodynamics of the interaction of 1-anilino-naphthalene-8-sulfonate with proteins. Biochim. Biophys. Acta 1794, 1700–1708 (2009).

    Article  CAS  Google Scholar 

  23. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: Native-state hydrogen exchange. Science 269, 192–197 (1995).

    Article  CAS  Google Scholar 

  24. Paterson, Y., Englander, S.W. & Roder, H. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science 249, 755–759 (1990).

    Article  CAS  Google Scholar 

  25. Schanda, P., Kupce, E. & Brutscher, B. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33, 199–211 (2005).

    Article  CAS  Google Scholar 

  26. Rüdiger, S., Freund, S.M., Veprintsev, D.B. & Fersht, A.R. CRINEPT-TROSY NMR reveals p53 core domain bound in an unfolded form to the chaperone Hsp90. Proc. Natl. Acad. Sci. USA 99, 11085–11090 (2002).

    Article  Google Scholar 

  27. Pratt, W.B., Morishima, Y., Murphy, M. & Harrell, M. Chaperoning of glucocorticoid receptors. Handb. Exp. Pharmacol. 2006, 111–138 (2006).

    Article  Google Scholar 

  28. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  29. Rippin, T.M., Freund, S.M., Veprintsev, D.B. & Fersht, A.R. Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J. Mol. Biol. 319, 351–358 (2002).

    Article  CAS  Google Scholar 

  30. Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. & Kay, L.E. A suite of triple-resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655–11666 (1994).

    Article  CAS  Google Scholar 

  31. Grzesiek, S. & Bax, A. Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J. Magn. Reson. 96, 432–440 (1992).

    CAS  Google Scholar 

  32. Wittekind, M. & Mueller, L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J. Magn. Reson. 101, 201–205 (1993).

    Article  CAS  Google Scholar 

  33. Wong, K.B. et al. Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc. Natl. Acad. Sci. USA 96, 8438–8442 (1999).

    Article  CAS  Google Scholar 

  34. Johnson, B.A. & Blevins, R.A. NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 604–613 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Kostic for preparation of p53 and Hsp90 expression constructs and preliminary binding assays. We thank P. Wright and members of the Wright and Dyson groups for helpful comments, G. Kroon for help with NMR experiments and E. Manlapaz for technical assistance. The original clone used to prepare the domains of human Hsp90α was provided by D. Toft of the Mayo Clinic (Rochester, Minnesota, USA). This work was supported by grant GM57374 from the US National Institutes of Health, and by a grant from the Korea Research Foundation (KRF-2006-214-E0009), funded by the Korean Government (MOEHRD).

Author information

Authors and Affiliations

Authors

Contributions

S.J.P. and H.J.D. designed experiments; S.J.P. carried out NMR and fluorescence experiments; B.N.B. carried out H/D exchange experiments; S.J.P., M.A.M.-Y. and H.J.D. analyzed data; S.J.P., M.A.M.-Y. and H.J.D. wrote the paper.

Corresponding author

Correspondence to H Jane Dyson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Discussion (PDF 592 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Borin, B., Martinez-Yamout, M. et al. The client protein p53 adopts a molten globule–like state in the presence of Hsp90. Nat Struct Mol Biol 18, 537–541 (2011). https://doi.org/10.1038/nsmb.2045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing