Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Min protein patterns emerge from rapid rebinding and membrane interaction of MinE

Abstract

In Escherichia coli, the pole-to-pole oscillation of the Min proteins directs septum formation to midcell, which is required for symmetric cell division. In vitro, protein waves emerge from the self-organization of MinD, a membrane-binding ATPase, and its activator MinE. For wave propagation, the proteins need to cycle through states of collective membrane binding and unbinding. Although MinD presumably undergoes cooperative membrane attachment, it is unclear how synchronous detachment is coordinated. We used confocal and single-molecule microscopy to elucidate the order of events during Min wave propagation. We propose that protein detachment at the rear of the wave, and the formation of the E-ring, are accomplished by two complementary processes: first, local accumulation of MinE due to rapid rebinding, leading to dynamic instability; and second, a structural change induced by membrane-interaction of MinE in an equimolar MinD–MinE (MinDE) complex, which supports the robustness of pattern formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MinD, MinE and eGFP-MinC in traveling waves in vitro.
Figure 2: Dynamics of Min proteins and their relationships.
Figure 3: MinE accumulates at the rear of the wave during wave propagation.
Figure 4: Single-molecule studies on Min proteins.
Figure 5: Membrane binding is not required for MinE accumulation.
Figure 6: Model of Min-protein wave propagation.

Similar content being viewed by others

References

  1. Lutkenhaus, J. Assembly dynamics of the bacterial MinCDE System and spatial regulation of the Z ring. Annu. Rev. Biochem. 76, 539–562 (2007).

    Article  CAS  Google Scholar 

  2. Hu, Z., Mukherjee, A., Pichoff, S. & Lutkenhaus, J. The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc. Natl. Acad. Sci. USA 96, 14819–14824 (1999).

    Article  CAS  Google Scholar 

  3. Hu, Z. & Lutkenhaus, J. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 34, 82–90 (1999).

    Article  CAS  Google Scholar 

  4. Raskin, D.M. & de Boer, P.A. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 4971–4976 (1999).

    Article  CAS  Google Scholar 

  5. Raskin, D.M. & de Boer, P.A. MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J. Bacteriol. 181, 6419–6424 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hale, C.A., Meinhardt, H. & de Boer, P.A. Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J. 20, 1563–1572 (2001).

    Article  CAS  Google Scholar 

  7. Hu, Z. & Lutkenhaus, J. Topological regulation of cell division in E. coli. spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol. Cell 7, 1337–1343 (2001).

    Article  CAS  Google Scholar 

  8. Hu, Z. & Lutkenhaus, J. Analysis of MinC reveals two independent domains involved in interaction with MinD and FtsZ. J. Bacteriol. 182, 3965–3971 (2000).

    Article  CAS  Google Scholar 

  9. de Boer, P.A., Crossley, R.E. & Rothfield, L.I. Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc. Natl. Acad. Sci. USA 87, 1129–1133 (1990).

    Article  CAS  Google Scholar 

  10. de Boer, P.A., Crossley, R.E. & Rothfield, L.I. Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli. J. Bacteriol. 174, 63–70 (1992).

    Article  CAS  Google Scholar 

  11. Lackner, L.L., Raskin, D.M. & Boer, P.A.J.d. ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro. J. Bacteriol. 185, 735–749 (2003).

    Article  CAS  Google Scholar 

  12. Hu, Z., Saez, C. & Lutkenhaus, J. Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE. J. Bacteriol. 185, 196–203 (2003).

    Article  CAS  Google Scholar 

  13. Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K. & Schwille, P. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320, 789–792 (2008).

    Article  CAS  Google Scholar 

  14. Kruse, K. & Jülicher, F. Oscillations in cell biology. Curr. Opin. Cell Biol. 17, 20–26 (2005).

    Article  CAS  Google Scholar 

  15. Novák, B. & Tyson, J.J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

    Article  Google Scholar 

  16. Mileykovskaya, E. et al. Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo. J. Biol. Chem. 278, 22193–22198 (2003).

    Article  CAS  Google Scholar 

  17. Lackner, L.L. Investigating the Mechanism of Escherichia coli Min Proteins Dynamics. PhD thesis, Case Western Reserve Univ. (2006).

    Google Scholar 

  18. Meinhardt, H. & de Boer, P.A. Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc. Natl. Acad. Sci. USA 98, 14202–14207 (2001).

    Article  CAS  Google Scholar 

  19. Huang, K.C., Meir, Y. & Wingreen, N.S. Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones. Proc. Natl. Acad. Sci. USA 100, 12724–12728 (2003).

    Article  CAS  Google Scholar 

  20. Meacci, G. & Kruse, K. Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins. Phys. Biol. 2, 89–97 (2005).

    Article  CAS  Google Scholar 

  21. Derr, J., Hopper, J.T., Sain, A. & Rutenberg, A.D. Self-organization of the MinE protein ring in subcellular Min oscillations. Phys. Rev. E 80, 011922 (2009).

    Article  Google Scholar 

  22. Arjunan, S.N.V. & Tomita, M. A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation. Syst. Synth. Biol. 4, 35–53 (2010).

    Article  Google Scholar 

  23. Szeto, T.H., Rowland, S.L. & King, G.F. The dimerization function of MinC resides in a structurally autonomous C-terminal domain. J. Bacteriol. 183, 6684–6687 (2001).

    Article  CAS  Google Scholar 

  24. de Boer, P.A., Crossley, R.E., Hand, A.R. & Rothfield, L.I. The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J. 10, 4371–4380 (1991).

    Article  CAS  Google Scholar 

  25. Galush, W.J., Nye, J.A. & Groves, J.T. Quantitative fluorescence microscopy using supported lipid bilayer standards. Biophys. J. 95, 2512–2519 (2008).

    Article  CAS  Google Scholar 

  26. Verveer, P.J., Rocks, O., Harpur, A.G., Bastiaens, P.I.H. Measuring FRET by acceptor photobleaching. in Protein-Protein Interactions: A Molecular Cloning Manual, Vol. 2 (eds. Golemis, E. & Adams, P.D.) 4598–4601 (Cold Spring Harbor Press, Cold Spring Harbor, NY, USA, 2005).

  27. Hsieh, C.-W. et al. Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli. Mol. Microbiol. 75, 499–512 (2010).

    Article  CAS  Google Scholar 

  28. Ferrell, J.E. & Xiong, W. Bistability in cell signaling: how to make continuous processes discontinuous, and reversible processes irreversible. Chaos 11, 227–236 (2001).

    Article  CAS  Google Scholar 

  29. Kruse, K., Howard, M. & Margolin, W. An experimentalist′s guide to computational modelling of the Min system. Mol. Microbiol. 63, 1279–1284 (2007).

    Article  CAS  Google Scholar 

  30. Tyson, J.J., Chen, K.C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article  CAS  Google Scholar 

  31. Howard, J. & Hyman, A.A. Growth, fluctuation and switching at microtubule plus ends. Nat Rev. Mol. Cell. Biol. 10, 569–574 (2009).

    Article  CAS  Google Scholar 

  32. Ptacin, J.L. et al. A spindle-like apparatus guides bacterial chromosome segregation. Nat. Cell Biol. 12, 791–798 (2010).

    Article  CAS  Google Scholar 

  33. Ringgaard, S., van Zon, J., Howard, M. & Gerdes, K. Movement and equipositioning of plasmids by ParA filament disassembly. Proc. Natl. Acad. Sci. USA 106, 19369–19374 (2009).

    Article  CAS  Google Scholar 

  34. Crocker, J. & Grier, D. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. RayChaudhuri (Tufts University) for plasmid pZH101, J. Howard, S. Vogel and M. Mayer (all Max Planck Institute for Molecular Cell Biology and Genetics) for comments on the manuscript and D. Mullins (University of California, San Francisco) for discussions. M.L. received a scholarship from the Studienstiftung des deutschen Volkes. This work was also supported by the Max Planck Society (M.L., E.F.-F., P.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.L., P.S. and K.K. designed the research, M.L. conducted the research, E.F.-F. and C.H. wrote the tracking software, C.H. built the single-molecule TIRF setup, M.L. analyzed and interpreted the data with the help of all authors, and M.L., E.F.-F. and P.S. wrote the paper with the help of K.K.

Corresponding author

Correspondence to Petra Schwille.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Methods and Supplementary Discussion (PDF 4480 kb)

Supplementary Video 1

Confocal fluorescence micrographs showing waves of MinD (0.8 μM with 10 mol % MinDCy3), MinE (1.2 μM MinE with 10 mol % MinE-Cy5) and MinC-eGFP (0.02 μM) on a supported lipid membrane. Scale bar is 50 μm. (MOV 3723 kb)

Supplementary Video 2

TIRF micrograph of waves of MinD (0.8 μM, doped with 5 mol % MinD-Alexa 488) and MinE (1.2 μM MinE, doped with 5 mol % MinE-Cy5) middle. The merged channels are shown on the bottom. Scale bar is 10 μm. (MOV 4333 kb)

Supplementary Video 3

Single molecule TIRF micrograph of waves of MinE (1.2 μM, doped with 0.01 mol % MinECy5) (top) and MinD (0.8 μM, doped with 10 mol % MinD-Alexa 488) (middle) and overlay (bottom). Scale bar is 20 μm. (MOV 11536 kb)

Supplementary Video 4

Matlab based particle tracking allowed us to track and analyze single particles inside the waves. The movie shows the calculated trajectories for single MinE proteins. (MOV 5252 kb)

Supplementary Video 5

Confocal fluorescence micrographs showing waves of MinD (blue, 0.8 μM with 10 mol % MinD-Alexa 488), MinE C1 (red, 1.2 μM MinE C1with 10 mol % MinE C1-Cy5). Scale bar is 50 μm. (MOV 2197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loose, M., Fischer-Friedrich, E., Herold, C. et al. Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat Struct Mol Biol 18, 577–583 (2011). https://doi.org/10.1038/nsmb.2037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2037

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing