Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ERK and PDE4 cooperate to induce RAF isoform switching in melanoma

Abstract

Melanocytes use BRAF to activate the MAP kinase (MAPK) pathway because CRAF is inhibited by the cyclic AMP (cAMP) pathway in these cells. By contrast, melanomas harboring Ras mutations use CRAF to activate the MAPK pathway. We describe the molecular mechanism of Raf isoform switching and cAMP pathway disruption, which take place during melanocyte transformation. We show that overactivation of the MAPK pathway, induced by the oncogenic Ras in melanoma, induces constitutive phosphorylation of BRAF on Ser151 by ERK, which inhibits NRAS-BRAF interaction . We also demonstrate that melanoma cells have elevated cAMP phosphodiesterase activity owing to overexpression of the cAMP-specific phosphodiesterase-4 enzymes; this activity inhibits cAMP signaling and allows CRAF reactivation in these cells. Reactivating the cAMP pathway inhibits proliferation and induces apoptosis of Ras-mutated melanoma cells, suggesting a new therapeutic approach for treating melanomas harboring Ras mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NRAS G12V is oncogenic in melanocytes and induces Raf isoform switching.
Figure 2: Mek inhibition rescues NRAS-BRAF binding in melanoma.
Figure 3: BRAF is phosphorylated on Ser151.
Figure 4: Disruption of the cAMP pathway in melanoma.
Figure 5: Increased PDE4 activity in melanoma compared with melanocytes.
Figure 6: Increased PDE4B2 expression in melanoma compared with melanocytes.
Figure 7: Reactivation of the cAMP pathway in melanoma inhibits the MAPK pathway and induces apoptosis.

Similar content being viewed by others

References

  1. MacKie, R.M., Hauschild, A. & Eggermont, A.M. Epidemiology of invasive cutaneous melanoma. Ann. Oncol. 20 Suppl 6, vi1–vi7 (2009).

    Article  Google Scholar 

  2. Hirobe, T. Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res. 18, 2–12 (2005).

    Article  CAS  Google Scholar 

  3. Dumaz, N. & Marais, R. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J. 272, 3491–3504 (2005).

    Article  CAS  Google Scholar 

  4. McKay, M.M. & Morrison, D.K. Integrating signals from RTKs to ERK/MAPK. Oncogene 26, 3113–3121 (2007).

    Article  CAS  Google Scholar 

  5. Karnoub, A.E. & Weinberg, R.A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517–531 (2008).

    Article  CAS  Google Scholar 

  6. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  Google Scholar 

  7. Turjanski, A.G., Vaque, J.P. & Gutkind, J.S. MAP kinases and the control of nuclear events. Oncogene 26, 3240–3253 (2007).

    Article  CAS  Google Scholar 

  8. Cohen, C. et al. Mitogen-actived protein kinase activation is an early event in melanoma progression. Clin. Cancer Res. 8, 3728–3733 (2002).

    CAS  PubMed  Google Scholar 

  9. Satzger, I. et al. Anal mucosal melanoma with KIT-activating mutation and response to imatinib therapy—case report and review of the literature. Dermatology 220, 77–81 (2010).

    Article  Google Scholar 

  10. Monsel, G., Ortonne, N., Bagot, M., Bensussan, A. & Dumaz, N. c-Kit mutants require hypoxia-inducible factor 1α to transform melanocytes. Oncogene 29, 227–236 (2010).

    Article  CAS  Google Scholar 

  11. Brose, M.S. et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62, 6997–7000 (2002).

    CAS  PubMed  Google Scholar 

  12. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  Google Scholar 

  13. Garnett, M.J. & Marais, R. Guilty as charged; B-RAF is a human oncogene. Cancer Cell 6, 313–319 (2004).

    Article  CAS  Google Scholar 

  14. Wellbrock, C. et al. V599EB-RAF is an oncogene in melanocytes. Cancer Res. 64, 2338–2342 (2004).

    Article  CAS  Google Scholar 

  15. Dumaz, N. et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res. 66, 9483–9491 (2006).

    Article  CAS  Google Scholar 

  16. Lee, H.J., Wall, B. & Chen, S. G-protein-coupled receptors and melanoma. Pigment Cell Melanoma Res. 21, 415–428 (2008).

    Article  CAS  Google Scholar 

  17. Lin, J.Y. & Fisher, D.E. Melanocyte biology and skin pigmentation. Nature 445, 843–850 (2007).

    Article  CAS  Google Scholar 

  18. Cheli, Y., Ohanna, M., Ballotti, R. & Bertolotto, C. 15-year quest in search for MITF target genes. Pigment Cell Melanoma Res. 23, 27–40 (2009).

    Article  Google Scholar 

  19. Houslay, M.D. & Adams, D.R. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem. J. 370, 1–18 (2003).

    Article  CAS  Google Scholar 

  20. Baillie, G.S., Scott, J.D. & Houslay, M.D. Compartmentalisation of phosphodiesterases and protein kinase A: opposites attract. FEBS Lett. 579, 3264–3270 (2005).

    Article  CAS  Google Scholar 

  21. Houslay, M.D. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem. Sci. 35, 91–100 (2010).

    Article  CAS  Google Scholar 

  22. Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol. Ther. 109, 366–398 (2006).

    Article  CAS  Google Scholar 

  23. Conti, M. & Beavo, J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 76, 481–511 (2007).

    Article  CAS  Google Scholar 

  24. Omori, K. & Kotera, J. Overview of PDEs and their regulation. Circ. Res. 100, 309–327 (2007).

    Article  CAS  Google Scholar 

  25. Buscà, R. et al. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19, 2900–2910 (2000).

    Article  Google Scholar 

  26. Bennett, D.C., Cooper, P.J. & Hart, I.R. A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int. J. Cancer 39, 414–418 (1987).

    Article  CAS  Google Scholar 

  27. Shepherd, M. et al. Molecular cloning and subcellular distribution of the novel PDE4B4 cAMP-specific phosphodiesterase isoform. Biochem. J. 370, 429–438 (2003).

    Article  CAS  Google Scholar 

  28. Lynch, M.J. et al. RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase A/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J. Biol. Chem. 280, 33178–33189 (2005).

    Article  CAS  Google Scholar 

  29. Wan, P.T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  Google Scholar 

  30. Montagut, C. et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 68, 4853–4861 (2008).

    Article  CAS  Google Scholar 

  31. McKay, M.M., Ritt, D.A. & Morrison, D.K. Signaling dynamics of the KSR1 scaffold complex. Proc. Natl. Acad. Sci. USA 106, 11022–11027 (2009).

    Article  CAS  Google Scholar 

  32. Brummer, T., Naegele, H., Reth, M. & Misawa, Y. Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene 22, 8823–8834 (2003).

    Article  CAS  Google Scholar 

  33. Ritt, D.A., Monson, D.M., Specht, S.I. & Morrison, D.K. Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol. Cell. Biol. 30, 806–819 (2010).

    Article  CAS  Google Scholar 

  34. Dougherty, M.K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  Google Scholar 

  35. Hoffmann, R., Baillie, G.S., MacKenzie, S.J., Yarwood, S.J. & Houslay, M.D. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 18, 893–903 (1999).

    Article  CAS  Google Scholar 

  36. MacKenzie, S.J., Baillie, G.S., McPhee, I., Bolger, G.B. & Houslay, M.D. ERK2 mitogen-activated protein kinase binding, phosphorylation, and regulation of the PDE4D cAMP-specific phosphodiesterases. The involvement of COOH-terminal docking sites and NH2-terminal UCR regions. J. Biol. Chem. 275, 16609–16617 (2000).

    Article  CAS  Google Scholar 

  37. Baillie, G.S., MacKenzie, S.J., McPhee, I. & Houslay, M.D. Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cyclic AMP-specific phosphodiesterases. Br. J. Pharmacol. 131, 811–819 (2000).

    Article  CAS  Google Scholar 

  38. Khaled, M., Levy, C. & Fisher, D.E. Control of melanocyte differentiation by a MITF-PDE4D3 homeostatic circuit. Genes Dev. 24, 2276–2281 (2010).

    Article  CAS  Google Scholar 

  39. Shepherd, M.C., Baillie, G.S., Stirling, D.I. & Houslay, M.D. Remodelling of the PDE4 cAMP phosphodiesterase isoform profile upon monocyte-macrophage differentiation of human U937 cells. Br. J. Pharmacol. 142, 339–351 (2004).

    Article  CAS  Google Scholar 

  40. McEwan, D.G. et al. Chemoresistant KM12C colon cancer cells are addicted to low cyclic AMP levels in a phosphodiesterase 4-regulated compartment via effects on phosphoinositide 3-kinase. Cancer Res. 67, 5248–5257 (2007).

    Article  CAS  Google Scholar 

  41. Moon, E.Y. & Lerner, A. PDE4 inhibitors activate a mitochondrial apoptotic pathway in chronic lymphocytic leukemia cells that is regulated by protein phosphatase 2A. Blood 101, 4122–4130 (2003).

    Article  CAS  Google Scholar 

  42. Fisher, D.E. et al. Melanoma from bench to bedside: meeting report from the 6th international melanoma congress. Pigment Cell Melanoma Res. 23, 14–26 (2009).

    Article  Google Scholar 

  43. Heidorn, S.J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  Google Scholar 

  44. Solit, D.B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  CAS  Google Scholar 

  45. O'Byrne, P.M. & Gauvreau, G. Phosphodiesterase-4 inhibition in COPD. Lancet 374, 665–667 (2009).

    Article  Google Scholar 

  46. Cahill, A.L., Herring, B.E. & Fox, A.P. Stable silencing of SNAP-25 in PC12 cells by RNA interference. BMC Neurosci. 7, 9 (2006).

    Article  Google Scholar 

  47. Marais, R., Light, Y., Paterson, H.F., Mason, C.S. & Marshall, C.J. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem. 272, 4378–4383 (1997).

    Article  CAS  Google Scholar 

  48. Huston, E. et al. Molecular cloning and transient expression in COS7 cells of a novel human PDE4B cAMP-specific phosphodiesterase, HSPDE4B3. Biochem. J. 328, 549–558 (1997).

    Article  CAS  Google Scholar 

  49. Moodie, S.A., Willumsen, B.M., Weber, M.J. & Wolfman, A. Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658–1661 (1993).

    Article  CAS  Google Scholar 

  50. Marchmont, R.J. & Houslay, M.D. Insulin trigger, cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase. Nature 286, 904–906 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.D. Houslay (University of Glasgow, Glasgow, UK) for the PDE4B antibody and the PDE4D constructs, G. Cosler for technical help and K. Dumaz for proofreading the manuscript. This work was funded by the French Institut National de la Santé et de la Recherche Médicale, Université Paris VII, Société Française de Dermatologie, Ligue Contre le Cancer (Comité du Val de Marne) and the French Institut National du Cancer (INCa 2007-1-PL7).

Author information

Authors and Affiliations

Authors

Contributions

A.M., J.A. and N.D. carried out research; M.B., A.B. and N.D. designed and directed the project; N.D. wrote the paper.

Corresponding author

Correspondence to Nicolas Dumaz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Methods (PDF 3168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquette, A., André, J., Bagot, M. et al. ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat Struct Mol Biol 18, 584–591 (2011). https://doi.org/10.1038/nsmb.2022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing