Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for CRISPR RNA-guided DNA recognition by Cascade

Abstract

The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Core complexes of Cascade retain crRNA.
Figure 2: Architecture of crRNA.
Figure 3: Target recognition by Cascade.
Figure 4: R-loop formation by Cascade.
Figure 5: Subunit composition of Cascade.
Figure 6: EM structure of Cascade.

Similar content being viewed by others

References

  1. van der Oost, J., Jore, M.M., Westra, E.R., Lundgren, M. & Brouns, S.J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34, 401–407 (2009).

    Article  CAS  Google Scholar 

  2. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    Article  CAS  Google Scholar 

  3. Karginov, F.V. & Hannon, G.J. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell 37, 7–19 (2010).

    Article  CAS  Google Scholar 

  4. Marraffini, L.A. & Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11, 181–190 (2010).

    Article  CAS  Google Scholar 

  5. Deveau, H., Garneau, J.E. & Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64, 475–493 (2010).

    Article  CAS  Google Scholar 

  6. Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).

    Article  CAS  Google Scholar 

  7. Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663 (2005).

    Article  CAS  Google Scholar 

  8. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).

    Article  CAS  Google Scholar 

  9. Jansen, R., Embden, J.D., Gaastra, W. & Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002).

    Article  CAS  Google Scholar 

  10. Haft, D.H., Selengut, J., Mongodin, E.F. & Nelson, K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol. 1, e60 (2005).

    Article  Google Scholar 

  11. Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I. & Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006).

    Article  Google Scholar 

  12. Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8, R61 (2007).

    Article  Google Scholar 

  13. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  Google Scholar 

  14. Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190, 1401–1412 (2008).

    Article  CAS  Google Scholar 

  15. Garneau, J.E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    Article  CAS  Google Scholar 

  16. Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904–912 (2009).

    Article  CAS  Google Scholar 

  17. Tang, T.H. et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl. Acad. Sci. USA 99, 7536–7541 (2002).

    Article  CAS  Google Scholar 

  18. Hale, C., Kleppe, K., Terns, R.M. & Terns, M.P. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14, 2572–2579 (2008).

    Article  CAS  Google Scholar 

  19. Lillestøl, R.K. et al. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol. Microbiol. 72, 259–272 (2009).

    Article  Google Scholar 

  20. Brouns, S.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  Google Scholar 

  21. Carte, J., Wang, R., Li, H., Terns, R.M. & Terns, M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008).

    Article  CAS  Google Scholar 

  22. Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J.A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).

    Article  CAS  Google Scholar 

  23. Hale, C.R. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945–956 (2009).

    Article  CAS  Google Scholar 

  24. Marraffini, L.A. & Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008).

    Article  CAS  Google Scholar 

  25. Dickman, M.J. & Hornby, D.P. Enrichment and analysis of RNA centered on ion pair reverse phase methodology. RNA 12, 691–696 (2006).

    Article  CAS  Google Scholar 

  26. Waghmare, S.P., Pousinis, P., Hornby, D.P. & Dickman, M.J. Studying the mechanism of RNA separations using RNA chromatography and its application in the analysis of ribosomal RNA and RNA:RNA interactions. J. Chromatogr. A 1216, 1377–1382 (2009).

    Article  CAS  Google Scholar 

  27. Raghavan, S.C., Tsai, A., Hsieh, C.L. & Lieber, M.R. Analysis of non-B DNA structure at chromosomal sites in the mammalian genome. Methods Enzymol. 409, 301–316 (2006).

    Article  CAS  Google Scholar 

  28. Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    Article  CAS  Google Scholar 

  29. Wilson-Sali, T. & Hsieh, T.S. Preferential cleavage of plasmid-based R-loops and D-loops by Drosophila topoisomerase IIIbeta. Proc. Natl. Acad. Sci. USA 99, 7974–7979 (2002).

    Article  CAS  Google Scholar 

  30. Thomas, M., White, R.L. & Davis, R.W. Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc. Natl. Acad. Sci. USA 73, 2294–2298 (1976).

    Article  CAS  Google Scholar 

  31. Heck, A.J.R. Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods 5, 927–933 (2008).

    Article  CAS  Google Scholar 

  32. Lorenzen, K., Vannini, A., Cramer, P. & Heck, A.J. Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. Structure 15, 1237–1245 (2007).

    Article  CAS  Google Scholar 

  33. Zhou, M. et al. Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc. Natl. Acad. Sci. USA 105, 18139–18144 (2008).

    Article  CAS  Google Scholar 

  34. Agari, Y., Yokoyama, S., Kuramitsu, S. & Shinkai, A. X-ray crystal structure of a CRISPR-associated protein, Cse2, from Thermus thermophilus HB8. Proteins 73, 1063–1067 (2008).

    Article  CAS  Google Scholar 

  35. Ma, J.B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670 (2005).

    Article  CAS  Google Scholar 

  36. Li, J., Yang, Z., Yu, B., Liu, J. & Chen, X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 15, 1501–1507 (2005).

    Article  CAS  Google Scholar 

  37. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69–82 (2007).

    Article  CAS  Google Scholar 

  38. Marraffini, L.A. & Sontheimer, E.J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010).

    Article  CAS  Google Scholar 

  39. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

    Article  CAS  Google Scholar 

  40. Singleton, M.R., Dillingham, M.S. & Wigley, D.B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).

    Article  CAS  Google Scholar 

  41. Itoh, T. & Tomizawa, J. Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc. Natl. Acad. Sci. USA 77, 2450–2454 (1980).

    Article  CAS  Google Scholar 

  42. Baker, T.A. & Kornberg, A. Transcriptional activation of initiation of replication from the E. coli chromosomal origin: an RNA-DNA hybrid near oriC. Cell 55, 113–123 (1988).

    Article  CAS  Google Scholar 

  43. Lee, D.Y. & Clayton, D.A. Initiation of mitochondrial DNA replication by transcription and R-loop processing. J. Biol. Chem. 273, 30614–30621 (1998).

    Article  CAS  Google Scholar 

  44. Yu, K., Chedin, F., Hsieh, C.L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  Google Scholar 

  45. Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292, 1876–1882 (2001).

    Article  CAS  Google Scholar 

  46. Noy, A., Perez, A., Marquez, M., Luque, F.J. & Orozco, M. Structure, recognition properties, and flexibility of the DNA.RNA hybrid. J. Am. Chem. Soc. 127, 4910–4920 (2005).

    Article  CAS  Google Scholar 

  47. Han, D. & Krauss, G. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett. 583, 771–776 (2009).

    Article  CAS  Google Scholar 

  48. Tahallah, N., Pinkse, M., Maier, C.S. & Heck, A.J. The effect of the source pressure on the abundance of ions of noncovalent protein assemblies in an electrospray ionization orthogonal time-of-flight instrument. Rapid Commun. Mass Spectrom. 15, 596–601 (2001).

    Article  CAS  Google Scholar 

  49. van den Heuvel, R.H. et al. Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal. Chem. 78, 7473–7483 (2006).

    Article  CAS  Google Scholar 

  50. Maxam, A.M. & Gilbert, W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  51. Oostergetel, G.T., Keegstra, W. & Brisson, A. Automation of specimen selection and data acquisition for protein electron crystallography. Ultramicroscopy 74, 47–59 (1998).

    Article  CAS  Google Scholar 

  52. van Heel, M. et al. Single-particle electron cryo-microscopy: towards atomic resolution. Q. Rev. Biophys. 33, 307–369 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.H. Lai for experimental contributions, and E. Schaible, P. Zwart and M. Bokhove for technical support and for assistance with post processing of SAXS data. This work was financially supported by The Netherlands Organisation for Scientific Research (NWO) Vici grant to J.v.d.O (865.05.001), Veni grants to S.J.J.B. (863.08.014) and E.v.D. (700.58.402), NWO TOP grant to E.J.B., and UK Engineering and Physical Sciences Research Council and Biotechnology and Biological Sciences Research Council grants to M.J.D. M.L. was financially supported by the Wenner-Gren Foundation, E.R.W. by Spinoza resources awarded to W.M. de Vos, A.P.L.S. by the Research Councils UK, B.W. by the Life Sciences Research Foundation of HHMI and Ü.P. by the Deutsche Forschungsgemeinschaft PU 435/1-1. We thank The Netherlands Proteomics Center for financial support.

Author information

Authors and Affiliations

Authors

Contributions

M.M.J., M.L., E.R.W., M.R.B., J.J.B. and J.v.d.O. purified Cascade and performed binding assays and plaque assays. E.v.D., A.B. and A.J.R.H. conducted protein MS experiments. J.B.B. and E.J.B. performed EM. S.P.W., A.P.L.S. and M.J.D. conducted RNA MS experiments. B.W., K.Z. and J.A.D. performed SAXS. Ü.P., R. Wurm and R. Wagner did the footprint analyses. All the authors analyzed the data, and S.J.J.B., M.M.J. and J.v.d.O. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to John van der Oost.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–3 and Supplementary Methods (PDF 4696 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jore, M., Lundgren, M., van Duijn, E. et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18, 529–536 (2011). https://doi.org/10.1038/nsmb.2019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2019

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing