Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for engagement by complement factor H of C3b on a self surface

Abstract

Complement factor H (FH) attenuates C3b molecules tethered by their thioester domains to self surfaces and thereby protects host tissues. Factor H is a cofactor for initial C3b proteolysis that ultimately yields a surface-attached fragment (C3d) corresponding to the thioester domain. We used NMR and X-ray crystallography to study the C3d–FH19–20 complex in atomic detail and identify glycosaminoglycan-binding residues in factor H module 20 of the C3d–FH19–20 complex. Mutagenesis justified the merging of the C3d–FH19–20 structure with an existing C3b–FH1–4 crystal structure. We concatenated the merged structure with the available FH6–8 crystal structure and new SAXS-derived FH1–4, FH8–15 and FH15–19 envelopes. The combined data are consistent with a bent-back factor H molecule that binds through its termini to two sites on one C3b molecule and simultaneously to adjacent polyanionic host-surface markers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Introduction to C3b/C3d and complement factor H.
Figure 2: Structure of the C3d–FH19–20 complex showing interacting domains and overall molecular architecture.
Figure 3: Heteronuclear NMR spectroscopy used to map the C3d and dp8 binding sites on FH19–20.
Figure 4: SPR studies of FH19–20 mutants binding to C3d.
Figure 5: Potential model of factor H engagement with surface-bound C3b.
Figure 6: The locations of missense mutations associated with the development of aHUS (and of Q1139A) mapped onto the structure of the C3d–FH19–20 complex.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J.D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  Google Scholar 

  2. de Córdoba, S.R. & de Jorge, E.G. Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin. Exp. Immunol. 151, 1–13 (2008).

    Article  Google Scholar 

  3. Janssen, B.J., Christodoulidou, A., McCarthy, A., Lambris, J.D. & Gros, P. Structure of C3b reveals conformational changes that underlie complement activity. Nature 444, 213–216 (2006).

    Article  CAS  Google Scholar 

  4. Pangburn, M.K., Schreiber, R.D. & Muller-Eberhard, H.J. Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein beta1H for cleavage of C3b and C4b in solution. J. Exp. Med. 146, 257–270 (1977).

    Article  CAS  Google Scholar 

  5. Weiler, J.M., Daha, M.R., Austen, K.F. & Fearon, D.T. Control of the amplification convertase of complement by the plasma protein beta1H. Proc. Natl. Acad. Sci. USA 73, 3268–3272 (1976).

    Article  CAS  Google Scholar 

  6. Whaley, K. & Ruddy, S. Modulation of the alternative complement pathways by beta 1 H globulin. J. Exp. Med. 144, 1147–1163 (1976).

    Article  CAS  Google Scholar 

  7. Ripoche, J. et al. Partial characterization of human complement factor H by protein and cDNA sequencing: homology with other complement and non-complement proteins. Biosci. Rep. 6, 65–72 (1986).

    Article  CAS  Google Scholar 

  8. Meri, S. & Pangburn, M.K. Regulation of alternative pathway complement activation by glycosaminoglycans: specificity of the polyanion binding site on factor H. Biochem. Biophys. Res. Commun. 198, 52–59 (1994).

    Article  CAS  Google Scholar 

  9. Pangburn, M.K. Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complement. Immunopharmacology 49, 149–157 (2000).

    Article  CAS  Google Scholar 

  10. Gordon, D.L., Kaufman, R.M., Blackmore, T.K., Kwong, J. & Lublin, D.M. Identification of complement regulatory domains in human factor H. J. Immunol. 155, 348–356 (1995).

    CAS  PubMed  Google Scholar 

  11. Pangburn, M.K. Cutting edge: localization of the host recognition functions of complement factor H at the carboxyl-terminal: implications for hemolytic uremic syndrome. J. Immunol. 169, 4702–4706 (2002).

    Article  CAS  Google Scholar 

  12. Schmidt, C.Q. et al. A new map of glycosaminoglycan and C3b binding sites on factor H. J. Immunol. 181, 2610–2619 (2008).

    Article  CAS  Google Scholar 

  13. Sharma, A.K. & Pangburn, M.K. Identification of three physically and functionally distinct binding sites for C3b in human complement factor H by deletion mutagenesis. Proc. Natl. Acad. Sci. USA 93, 10996–11001 (1996).

    Article  CAS  Google Scholar 

  14. Wu, J. et al. Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat. Immunol. 10, 728–733 (2009).

    Article  CAS  Google Scholar 

  15. Buddles, M.R., Donne, R.L., Richards, A., Goodship, J. & Goodship, T.H. Complement factor H gene mutation associated with autosomal recessive atypical hemolytic uremic syndrome. Am. J. Hum. Genet. 66, 1721–1722 (2000).

    Article  CAS  Google Scholar 

  16. Herbert, A.P., Uhrin, D., Lyon, M., Pangburn, M.K. & Barlow, P.N. Disease-associated sequence variations congregate in a polyanion recognition patch on human factor H revealed in three-dimensional structure. J. Biol. Chem. 281, 16512–16520 (2006).

    Article  CAS  Google Scholar 

  17. Pérez-Caballero, D. et al. Clustering of missense mutations in the C-terminal region of factor H in atypical hemolytic uremic syndrome. Am. J. Hum. Genet. 68, 478–484 (2001).

    Article  Google Scholar 

  18. Ferreira, V.P., Herbert, A.P., Hocking, H.G., Barlow, P.N. & Pangburn, M.K. Critical role of the C-terminal domains of factor H in regulating complement activation at cell surfaces. J. Immunol. 177, 6308–6316 (2006).

    Article  CAS  Google Scholar 

  19. Jokiranta, T.S. et al. Binding of complement factor H to endothelial cells is mediated by the carboxy-terminal glycosaminoglycan binding site. Am. J. Pathol. 167, 1173–1181 (2005).

    Article  CAS  Google Scholar 

  20. Blackmore, T.K. et al. Identification of the second heparin-binding domain in human complement factor H. J. Immunol. 160, 3342–3348 (1998).

    CAS  PubMed  Google Scholar 

  21. Blackmore, T.K., Sadlon, T.A., Ward, H.M., Lublin, D.M. & Gordon, D.L. Identification of a heparin binding domain in the seventh short consensus repeat of complement factor H. J. Immunol. 157, 5422–5427 (1996).

    CAS  PubMed  Google Scholar 

  22. Hageman, G.S. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 102, 7227–7232 (2005).

    Article  CAS  Google Scholar 

  23. Klein, R.J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    Article  CAS  Google Scholar 

  24. Kuehn, B.M. Gene discovery provides clues to cause of age-related macular degeneration. J. Am. Med. Assoc. 293, 1841–1845 (2005).

    Article  CAS  Google Scholar 

  25. Zareparsi, S. et al. Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am. J. Hum. Genet. 77, 149–153 (2005).

    Article  CAS  Google Scholar 

  26. Wiesmann, C. et al. Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444, 217–220 (2006).

    Article  CAS  Google Scholar 

  27. Lian, L.Y., Barsukov, I.L., Sutcliffe, M.J., Sze, K.H. & Roberts, G.C. Protein-ligand interactions: exchange processes and determination of ligand conformation and protein-ligand contacts. Methods Enzymol. 239, 657–700 (1994).

    Article  CAS  Google Scholar 

  28. Matsuo, H. et al. Identification by NMR spectroscopy of residues at contact surfaces in large, slowly exchanging macromolecular complexes. J. Am. Chem. Soc. 121, 9903–9904 (1999).

    Article  CAS  Google Scholar 

  29. Daughdrill, G.W. et al. Chemical shift changes provide evidence for overlapping single-stranded DNA- and XPA-binding sites on the 70 kDa subunit of human replication protein A. Nucleic Acids Res. 31, 4176–4183 (2003).

    Article  CAS  Google Scholar 

  30. McAlister, M.S.B. et al. NMR analysis of interacting soluble forms of the cell-cell recognition molecules CD2 and CD48. Biochemistry 35, 5982–5991 (1996).

    Article  CAS  Google Scholar 

  31. Ferreira, V.P. et al. The binding of factor H to a complex of physiological polyanions and C3b on cells is impaired in atypical hemolytic uremic syndrome. J. Immunol. 182, 7009–7018 (2009).

    Article  CAS  Google Scholar 

  32. Lehtinen, M.J., Rops, A.L., Isenman, D.E., van der Vlag, J. & Jokiranta, T.S. Mutations of factor H impair regulation of surface-bound C3b by three mechanisms in atypical hemolytic uremic syndrome. J. Biol. Chem. 284, 15650–15658 (2009).

    Article  CAS  Google Scholar 

  33. Morikis, D. & Lambris, J.D. The electrostatic nature of C3d-complement receptor 2 association. J. Immunol. 172, 7537–7547 (2004).

    Article  CAS  Google Scholar 

  34. Ricklin, D., Ricklin-Lichtsteiner, S.K., Markiewski, M.M., Geisbrecht, B.V. & Lambris, J.D. Cutting edge: members of the Staphylococcus aureus extracellular fibrinogen-binding protein family inhibit the interaction of C3d with complement receptor 2. J. Immunol. 181, 7463–7467 (2008).

    Article  CAS  Google Scholar 

  35. Bhattacharjee, A., Lehtinen, M.J., Kajander, T., Goldman, A. & Jokiranta, T.S. Both domain 19 and domain 20 of factor H are involved in binding to complement C3b and C3d. Mol. Immunol. 47, 1686–1691 (2010).

    Article  CAS  Google Scholar 

  36. Prosser, B.E. et al. Structural basis for complement factor H linked age-related macular degeneration. J. Exp. Med. 204, 2277–2283 (2007).

    Article  CAS  Google Scholar 

  37. Schmidt, C.Q. et al. The central portion of factor H (modules 10–15) is compact and contains a structurally deviant CCP module. J. Mol. Biol. 395, 105–122 (2010).

    Article  CAS  Google Scholar 

  38. Barlow, P.N. et al. Solution structure of a pair of complement modules by nuclear magnetic resonance. J. Mol. Biol. 232, 268–284 (1993).

    Article  CAS  Google Scholar 

  39. Barlow, P.N. et al. Solution structure of the fifth repeat of factor H: a second example of the complement control protein module. Biochemistry 31, 3626–3634 (1992).

    Article  CAS  Google Scholar 

  40. Szakonyi, G. et al. Structure of complement receptor 2 in complex with its C3d ligand. Science 292, 1725–1728 (2001).

    Article  CAS  Google Scholar 

  41. Hammel, M. et al. A structural basis for complement inhibition by Staphylococcus aureus. Nat. Immunol. 8, 430–437 (2007).

    Article  CAS  Google Scholar 

  42. Chen, H. et al. Allosteric inhibition of complement function by a staphylococcal immune evasion protein. Proc. Natl. Acad. Sci. USA 107, 17621–17626 (2010).

    Article  CAS  Google Scholar 

  43. Jokiranta, T.S. et al. Structure of complement factor H carboxyl-terminus reveals molecular basis of atypical haemolytic uremic syndrome. EMBO J. 25, 1784–1794 (2006).

    Article  CAS  Google Scholar 

  44. Saunders, R.E. et al. The interactive Factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and Factor I mutations with structural models. Hum. Mutat. 28, 222–234 (2007).

    Article  CAS  Google Scholar 

  45. Miller, E.C., Roumenina, L., Fremeaux-Bacchi, V. & Atkinson, J.P. Functional characterization of mutations in complement C3 that predispose to aHUS. Mol. Immunol. 47, 2291 (2010).

    Article  Google Scholar 

  46. Frémeaux-Bacchi, V. et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112, 4948–4952 (2008).

    Article  Google Scholar 

  47. Aslam, M. & Perkins, S.J. Folded-back solution structure of monomeric factor H of human complement by synchrotron X-ray and neutron scattering, analytical ultracentrifugation and constrained molecular modelling. J. Mol. Biol. 309, 1117–1138 (2001).

    Article  CAS  Google Scholar 

  48. Fernando, A.N. et al. Associative and structural properties of the region of complement factor H encompassing the Tyr402His disease-related polymorphism and its interactions with heparin. J. Mol. Biol. 368, 564–581 (2007).

    Article  CAS  Google Scholar 

  49. Oppermann, M. et al. The C-terminus of complement regulator Factor H mediates target recognition: evidence for a compact conformation of the native protein. Clin. Exp. Immunol. 144, 342–352 (2006).

    Article  CAS  Google Scholar 

  50. Okemefuna, A.I. et al. The regulatory SCR-1/5 and cell surface-binding SCR-16/20 fragments of factor H reveal partially folded-back solution structures and different self-associative properties. J. Mol. Biol. 375, 80–101 (2008).

    Article  CAS  Google Scholar 

  51. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  52. Young, K.A., Chen, X.S., Holers, V.M. & Hannan, J.P. Isolating the Epstein-Barr virus gp350/220 binding site on complement receptor type 2 (CR2/CD21). J. Biol. Chem. 282, 36614–36625 (2007).

    Article  CAS  Google Scholar 

  53. Shaw, C.D. et al. Delineation of the complement receptor type 2–C3d complex by site-directed mutagenesis and molecular docking. J. Mol. Biol. 404, 697–710 (2010).

    Article  CAS  Google Scholar 

  54. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 ESF-EAMCB Newslett. Protein Crystallogr. 26, (1992).

  55. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  Google Scholar 

  56. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  57. Nagar, B., Jones, R.G., Diefenbach, R.J., Isenman, D.E. & Rini, J.M. X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2. Science 280, 1277–1281 (1998).

    Article  CAS  Google Scholar 

  58. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  59. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  60. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Use of the Protein Production Facilities at the University of Edinburgh was supported by The Wellcome Trust, the Scottish University Life Sciences Alliance and the UK Biotechnology and Biological Sciences Research Council. C.Q.S. and M.G. were supported by Wellcome Trust grant 081179, A.P.H. was supported by Wellcome Trust grant 078780/Z/05/Z (to D.U. and P.N.B.), B.S.B. was supported by an EastChem PhD studentship and a University of Edinburgh campaign small project grant and C.M.J. was supported by EC FP6 (Marie Curie EST Fellowship, contract MEST-CT-2005-020744).

Author information

Authors and Affiliations

Authors

Contributions

M.G., C.Q.S., D.K. and A.P.H. engineered and produced factor H proteins; J.P.H. and D.G. engineered and produced C3d proteins; C.M.J. generated dp8 heparin fragments. J.P.H. and D.G. crystallized the C3d–FH complex; H.P.M. and J.P.H. collected crystallographic data; H.P.M. determined and refined the structure; B.S.B. produced 15N-labeled factor H and carried out NMR studies of the FH–C3d and FH–dp8 interactions; B.S.B. and A.P.H. carried out the hemolysis assay; J.P.H. carried out the C3d-dp8 competition ELISA; C.Q.S. and M.G. carried out the SPR measurements; H.D.T.M. and D.I.S. carried out the SAXS analysis; D.U., J.P.H. and P.N.B. conceived and supervised the project; H.P.M., C.Q.S., M.G., B.S.B., D.U., J.P.H. and P.N.B. wrote the manuscript.

Corresponding authors

Correspondence to Paul N Barlow or Jonathan P Hannan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–3 and Supplementary Methods (PDF 2975 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, H., Schmidt, C., Guariento, M. et al. Structural basis for engagement by complement factor H of C3b on a self surface. Nat Struct Mol Biol 18, 463–470 (2011). https://doi.org/10.1038/nsmb.2018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing