Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The hidden energetics of ligand binding and activation in a glutamate receptor

Abstract

Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate most excitatory synaptic transmission in the central nervous system. The free energy of neurotransmitter binding to the ligand-binding domains (LBDs) of iGluRs is converted into useful work to drive receptor activation. We have computed the principal thermodynamic contributions from ligand docking and ligand-induced closure of LBDs for nine ligands of GluA2 using all-atom molecular dynamics free energy simulations. We have validated the results by comparison with experimentally measured apparent affinities to the isolated LBD. Features in the free energy landscapes that govern closure of LBDs are key determinants of binding free energies. An analysis of accessible LBD conformations transposed into the context of an intact GluA2 receptor revealed that the relative displacement of specific diagonal subunits in the tetrameric structure may be key to the action of partial agonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ligands of GluA2.
Figure 2: LBD conformational distributions.
Figure 3: Comparison of calculated free energy contributions with experimentally measured effective ligand-binding affinities to the isolated GluA2 LBD.
Figure 4: LBD conformational distributions in the context of an intact receptor.
Figure 5: Inter-LBD distance distributions.

Similar content being viewed by others

References

  1. Mayer, M.L. Glutamate receptors at atomic resolution. Nature 440, 456–462 (2006).

    Article  CAS  Google Scholar 

  2. Sobolevsky, A.I., Rosconi, M.P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).

    Article  CAS  Google Scholar 

  3. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000).

    Article  CAS  Google Scholar 

  4. Inanobe, A., Furukawa, H. & Gouaux, E. Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47, 71–84 (2005).

    Article  CAS  Google Scholar 

  5. Frydenvang, K. et al. Full domain closure of the ligand-binding core of the ionotropic glutamate receptor iGluR5 induced by the high affinity agonist dysiherbaine and the functional antagonist 8,9-dideoxyneodysiherbaine. J. Biol. Chem. 284, 14219–14229 (2009).

    Article  CAS  Google Scholar 

  6. Holm, M.M., Lunn, M.L., Traynelis, S.F., Kastrup, J.S. & Egebjerg, J. Structural determinants of agonist-specific kinetics at the ionotropic glutamate receptor 2. Proc. Natl. Acad. Sci. USA 102, 12053–12058 (2005).

    Article  CAS  Google Scholar 

  7. Bjerrum, E.J. & Biggin, P.C. Rigid body essential X-ray crystallography: distinguishing the bend and twist of glutamate receptor ligand binding domains. Proteins 72, 434–446 (2008).

    Article  CAS  Google Scholar 

  8. Birdsey-Benson, A., Gill, A., Henderson, L.P. & Madden, D.R. Enhanced efficacy without further cleft closure: reevaluating twist as a source of agonist efficacy in AMPA receptors. J. Neurosci. 30, 1463–1470 (2010).

    Article  CAS  Google Scholar 

  9. Ahmed, A.H. et al. Mechanisms of antagonism of the GluR2 AMPA receptor: structure and dynamics of the complex of two willardiine antagonists with the glutamate binding domain. Biochemistry 48, 3894–3903 (2009).

    Article  CAS  Google Scholar 

  10. Robert, A., Armstrong, N., Gouaux, J.E. & Howe, J.R. AMPA receptor binding cleft mutations that alter affinity, efficacy, and recovery from desensitization. J. Neurosci. 25, 3752–3762 (2005).

    Article  CAS  Google Scholar 

  11. Weston, M.C., Gertler, C., Mayer, M.L. & Rosenmund, C. Interdomain interactions in AMPA and kainate receptors regulate affinity for glutamate. J. Neurosci. 26, 7650–7658 (2006).

    Article  CAS  Google Scholar 

  12. Zhang, W., Cho, Y., Lolis, E. & Howe, J.R. Structural and single-channel results indicate that the rates of ligand binding domain closing and opening directly impact AMPA receptor gating. J. Neurosci. 28, 932–943 (2008).

    Article  Google Scholar 

  13. Maltsev, A.S., Ahmed, A.H., Fenwick, M.K., Jane, D.E. & Oswald, R.E. Mechanism of partial agonism at the GluR2 AMPA receptor: measurements of lobe orientation in solution. Biochemistry 47, 10600–10610 (2008).

    Article  CAS  Google Scholar 

  14. Woo, H.J. & Roux, B. Calculation of absolute protein-ligand binding free energy from computer simulations. Proc. Natl. Acad. Sci. USA 102, 6825–6830 (2005).

    Article  CAS  Google Scholar 

  15. Abele, R., Keinänen, K. & Madden, D.R. Agonist-induced isomerization in a glutamate receptor ligand-binding domain. J. Biol. Chem. 275, 21355–21363 (2000).

    Article  CAS  Google Scholar 

  16. Cheng, Q., Du, M., Ramanoudjame, G. & Jayaraman, V. Evolution of glutamate interactions during binding to a glutamate receptor. Nat. Chem. Biol. 1, 329–332 (2005).

    Article  CAS  Google Scholar 

  17. Fenwick, M.K. & Oswald, R.E. On the mechanisms of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor binding to glutamate and kainate. J. Biol. Chem. 285, 12334–12343 (2010).

    Article  CAS  Google Scholar 

  18. Cheng, Q. & Jayaraman, V. Chemistry and conformation of the ligand-binding domain of GluR2 subtype of glutamate receptors. J. Biol. Chem. 279, 26346–26350 (2004).

    Article  CAS  Google Scholar 

  19. Lau, A.Y. & Roux, B. The free energy landscapes governing conformational changes in a glutamate receptor ligand-binding domain. Structure 15, 1203–1214 (2007).

    Article  CAS  Google Scholar 

  20. Turski, L. et al. ZK200775: a phosphonate quinoxalinedione AMPA antagonist for neuroprotection in stroke and trauma. Proc. Natl. Acad. Sci. USA 95, 10960–10965 (1998).

    Article  CAS  Google Scholar 

  21. Das, U., Kumar, J., Mayer, M.L. & Plested, A.J.R. Domain organization and function in GluK2 subtype kainate receptors. Proc. Natl. Acad. Sci. USA 107, 8463–8468 (2010).

    Article  CAS  Google Scholar 

  22. Hogner, A. et al. Structural basis for AMPA receptor activation and ligand selectivity: crystal structures of five agonist complexes with the GluR2 ligand-binding core. J. Mol. Biol. 322, 93–109 (2002).

    Article  CAS  Google Scholar 

  23. Nielsen, B.B. et al. Exploring the GluR2 ligand-binding core in complex with the bicyclical AMPA analogue (S)-4-AHCP. FEBS J. 272, 1639–1648 (2005).

    Article  CAS  Google Scholar 

  24. Hogner, A. et al. Competitive antagonism of AMPA receptors by ligands of different classes: crystal structure of ATPO bound to the GluR2 ligand-binding core, in comparison with DNQX. J. Med. Chem. 46, 214–221 (2003).

    Article  CAS  Google Scholar 

  25. Fiser, A. & Sali, A. ModLoop: automated modeling of loops in protein structures. Bioinformatics 19, 2500–2501 (2003).

    Article  CAS  Google Scholar 

  26. Krivov, G.G., Shapovalov, M.V. & Dunbrack, R.L.. Jr Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77, 778–795 (2009).

    Article  CAS  Google Scholar 

  27. Wang, J., Wang, W., Kollman, P.A. & Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006).

    Article  Google Scholar 

  28. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A. & Case, D.A. Development and testing of a general AMBER force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  Google Scholar 

  29. MacKerell, A.D. Jr. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  Google Scholar 

  30. Frisch, M.J. et al. Gaussian 03, Revision C.02. (2004).

  31. Brooks, B.R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    Article  CAS  Google Scholar 

  32. Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H. & Kollman, P.A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).

    Article  CAS  Google Scholar 

  33. Souaille, M. & Roux, B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 135, 40–57 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Gouaux, V. Jayaraman, C. Landes, M. Mayer, R. Oswald and H. Weinstein for review of the manuscript, and W. Gan for discussions. This work was supported by grant MCB-0920261 from the National Science Foundation and grant GM062342 from the US National Institutes of Health. Computational resources were provided by the National Center for Supercomputing Applications (NCSA) through grant MCA01S018.

Author information

Authors and Affiliations

Authors

Contributions

A.Y.L. and B.R. designed the research, analyzed the data and wrote the manuscript. A.Y.L. performed the computations.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–5 and Supplementary Methods (PDF 1074 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, A., Roux, B. The hidden energetics of ligand binding and activation in a glutamate receptor. Nat Struct Mol Biol 18, 283–287 (2011). https://doi.org/10.1038/nsmb.2010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing