Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into energy regulation of light-harvesting complex CP29 from spinach

Abstract

CP29, one of the minor light-harvesting complexes of higher-plant photosystem II, absorbs and transfers solar energy for photosynthesis and also has important roles in photoprotection. We have solved the crystal structure of spinach CP29 at 2.80-Å resolution. Each CP29 monomer contains 13 chlorophyll and 3 carotenoid molecules, which differs considerably from the major light-harvesting complex LHCII and the previously proposed CP29 model. The 13 chlorophyll-binding sites are assigned as eight chlorophyll a sites, four chlorophyll b and one putative mixed site occupied by both chlorophylls a and b. Based on the present X-ray structure, an integrated pigment network in CP29 is constructed. Two special clusters of pigment molecules, namely a615–a611–a612–Lut and Vio(Zea)–a603–a609, have been identified and might function as potential energy-quenching centers and as the exit or entrance in energy-transfer pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo view of the overall structure of CP29.
Figure 2: Structural comparison between CP29 and LHCII (PDB 1RWT)4.
Figure 3: Room temperature (20 °C) absorption spectra of CP29 showing its characteristic features.
Figure 4: Pigment arrangement in CP29.
Figure 5: Strongly interacting pigment cluster a615–a611–a612–Lut.
Figure 6: Pigment cluster Vio(Zea)–a603–a609.
Figure 7: Two important pigment clusters in CP29.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Caffarri, S., Kouril, R., Kereiche, S., Boekema, E.J. & Croce, R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 28, 3052–3063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horton, P., Ruban, A.V. & Walters, R.G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Müller, P., Li, X.P. & Niyogi, K.K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558–1566 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Standfuss, J., Terwisscha van Scheltinga, A.C., Lamborghini, M. & Kuhlbrandt, W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 24, 919–928 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Oort, B. et al. Effect of antenna-depletion in Photosystem II on excitation energy transfer in Arabidopsis thaliana. Biophys. J. 98, 922–931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahn, T.K. et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320, 794–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Avenson, T.J. et al. Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J. Biol. Chem. 283, 3550–3558 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, Y.C. et al. Kinetic modeling of charge-transfer quenching in the CP29 minor complex. J. Phys. Chem. B 112, 13418–13423 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Caffarri, S., Passarini, F., Bassi, R. & Croce, R. A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II. FEBS Lett. 581, 4704–4710 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Bassi, R., Croce, R., Cugini, D. & Sandona, D. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc. Natl. Acad. Sci. USA 96, 10056–10061 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gastaldelli, M., Canino, G., Croce, R. & Bassi, R. Xanthophyll binding sites of the CP29 (Lhcb4) subunit of higher plant photosystem II investigated by domain swapping and mutation analysis. J. Biol. Chem. 278, 19190–19198 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kavalenka, A.A. et al. Site-directed spin-labeling study of the light-harvesting complex CP29. Biophys. J. 96, 3620–3628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pascal, A. et al. Spectroscopic characterization of the spinach Lhcb4 protein (CP29), a minor light-harvesting complex of photosystem II. Eur. J. Biochem. 262, 817–823 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Ruban, A.V., Lee, P.J., Wentworth, M., Young, A.J. & Horton, P. Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. J. Biol. Chem. 274, 10458–10465 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Das, S.K. & Frank, H.A. Pigment compositions, spectral properties, and energy transfer efficiencies between the xanthophylls and chlorophylls in the major and minor pigment–protein complexes of photosystem II. Biochemistry 41, 13087–13095 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Balaban, T.S. et al. Preferential pathways for light-trapping involving β-ligated chlorophylls. Biochim. Biophys. Acta 1787, 1254–1265 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Georgakopoulou, S. et al. Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Biochemistry 46, 4745–4754 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Gradinaru, C.C. et al. Ultrafast evolution of the excited states in the chlorophyll a/b complex CP29 from green plants studied by energy-selective pump-probe spectroscopy. Biochemistry 37, 1143–1149 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Cinque, G., Croce, R., Holzwarth, A. & Bassi, R. Energy transfer among CP29 chlorophylls: calculated Forster rates and experimental transient absorption at room temperature. Biophys. J. 79, 1706–1717 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salverda, J.M. et al. Energy transfer in light-harvesting complexes LHCII and CP29 of spinach studied with three pulse echo peak shift and transient grating. Biophys. J. 84, 450–465 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Croce, R., Muller, M.G., Bassi, R. & Holzwarth, A.R. Chlorophyll b to chlorophyll a energy transfer kinetics in the CP29 antenna complex: a comparative femtosecond absorption study between native and reconstituted proteins. Biophys. J. 84, 2508–2516 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Croce, R., Muller, M.G., Caffarri, S., Bassi, R. & Holzwarth, A.R. Energy transfer pathways in the minor antenna complex CP29 of photosystem II: a femtosecond study of carotenoid to chlorophyll transfer on mutant and WT complexes. Biophys. J. 84, 2517–2532 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dreuw, A., Fleming, G.R. & Head-Gordon, M. Chlorophyll fluorescence quenching by xanthophylls. Phys. Chem. Chem. Phys. 5, 3247–3256 (2003).

    Article  CAS  Google Scholar 

  25. Gradinaru, C.C., van Stokkum, I.H.M., Pascal, A.A., van Grondelle, R. & van Amerongen, H. Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29. A multicolor, femtosecond pump-probe study. J. Phys. Chem. B 104, 9330–9342 (2000).

    Article  CAS  Google Scholar 

  26. Schödel, R., Irrgang, K.D., Voigt, J. & Renger, G. Quenching of chlorophyll fluorescence by triplets in solubilized light-harvesting complex II (LHCII). Biophys. J. 76, 2238–2248 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mozzo, M., Dall'Osto, L., Hienerwadel, R., Bassi, R. & Croce, R. Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching. J. Biol. Chem. 283, 6184–6192 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Dexter, D.L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953).

    Article  CAS  Google Scholar 

  29. Damjanović, A., Ritz, T. & Schulten, K. Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59, 3293–3311 (1999).

    Google Scholar 

  30. Pascal, A.A. et al. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436, 134–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Ruban, A.V. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Mozzo, M., Passarini, F., Bassi, R., van Amerongen, H. & Croce, R. Photoprotection in higher plants: the putative quenching site is conserved in all outer light-harvesting complexes of Photosystem II. Biochim. Biophys. Acta 1777, 1263–1267 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Demmig, B., Winter, K., Kruger, A. & Czygan, F.C. Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol. 84, 218–224 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gilmore, A.M. & Yamamoto, H.Y. Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol. 96, 635–643 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niyogi, K.K., Grossman, A.R. & Bjorkman, O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10, 1121–1134 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruban, A.V., Young, A.J., Pascal, A.A. & Horton, P. The effects of illumination on the xanthophyll composition of the Photosystem II light-harvesting complexes of spinach thylakoid membranes. Plant Physiol. 104, 227–234 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morosinotto, T., Baronio, R. & Bassi, R. Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle. J. Biol. Chem. 277, 36913–36920 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Farber, A., Young, A.J., Ruban, A.V., Horton, P. & Jahns, P. Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants (the relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching). Plant Physiol. 115, 1609–1618 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pesaresi, P., Sandona, D., Giuffra, E. & Bassi, R. A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Lett. 402, 151–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Bassi, R. & Caffarri, S. Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls. Photosynth. Res. 64, 243–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Hager, A. & Holocher, K. Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192, 581–589 (1994).

    Article  CAS  Google Scholar 

  42. Arnoux, P., Morosinotto, T., Saga, G., Bassi, R. & Pignol, D. A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Plant Cell 21, 2036–2044 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horton, P., Ruban, A.V. & Wentworth, M. Allosteric regulation of the light-harvesting system of photosystem II. Phil. Trans. R. Soc. Lond. B 355, 1361–1370 (2000).

    Article  CAS  Google Scholar 

  44. Frank, H.A. et al. Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 41, 389–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Holt, N.E. et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Amarie, S. et al. Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29. Biochim. Biophys. Acta 1787, 747–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Berera, R. et al. A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 103, 5343–5348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Teardo, E. et al. Evidences for interaction of PsbS with photosynthetic complexes in maize thylakoids. Biochim. Biophys. Acta 1767, 703–711 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Li, X.P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Emanuelsson, O., Nielsen, H. & von Heijne, G. ChloroP, a neural network–based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8, 978–984 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Collaborative Computing Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  53. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  56. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  59. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  60. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.C. Liang, X.C. Gu, R. Bassi, N. Isaacs and T. Jiang for discussions and the staffs at the Shanghai Synchrotron Radiation Facility, the Beijing Synchrotron Radiation Facility, SPring8 and the Photo Factory for technical support with crystal screening and data collection. This work was supported by National Natural Science Foundation of China grants 30530210, 30721003 and 31021062 (W.R.C.), 973 Project grants 2006CB806505, 2006CB911001 and 2011CBA00902 (W.R.C.) and Knowledge Innovation Program of the Chinese Academy of Sciences grant KSCX2-YW-R-123 (W.R.C.).

Author information

Authors and Affiliations

Authors

Contributions

X.W.P. did the purification, crystallization, data collection and processing, structure determination and structural analysis. M.L. assisted in data collection, structure analysis and manuscript preparation. T.W. did the protein sequence determination. L.F.W. assisted in data collection and structure determination. C.J.J., Z.Q.H., X.L.Z. and J.P.Z. assisted in sample isolation and purification. W.R.C. supervised the project and analyzed the structure. X.W.P. and W.R.C. wrote the manuscript.

Corresponding author

Correspondence to Wenrui Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 3192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, X., Li, M., Wan, T. et al. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 18, 309–315 (2011). https://doi.org/10.1038/nsmb.2008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2008

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing