Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanics of Hsp70 chaperones enables differential interaction with client proteins

Abstract

Hsp70 chaperones interact with a wide spectrum of substrates ranging from unfolded to natively folded and aggregated proteins. Structural evidence suggests that bound substrates are entirely enclosed in a β-sheet cavity covered by a helical lid, which requires structural rearrangements including lid opening to allow substrate access. We analyzed the mechanics of the lid movement of bacterial DnaK by disulfide fixation of lid elements to the β-sheet and by electron paramagnetic resonance spectroscopy using spin labels in the lid and β-sheet. Our results indicate that the lid-forming helix B adopts at least three conformational states and, notably, does not close over bound proteins, implying that DnaK does not only bind to extended peptide stretches of protein substrates but can also accommodate regions with substantial tertiary structure. This flexible binding mechanism provides a basis for the broad spectrum of substrate conformers of Hsp70s.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the DnaK substrate-binding domain.
Figure 2: DnaK variants show altered interaction with substrates.
Figure 3: Only reduced DnaK-HA is capable of refolding luciferase.
Figure 4: Effects of disulfide bond formation on interdomain communication.
Figure 5: EPR spectra of a spin pair in the SBD of DnaK in the presence of nucleotide and substrate.
Figure 6: The distal part of helix B can be cross-linked to bound substrate.
Figure 7: Cartoon representation of the SBD of DnaK illustrating possible lid movements.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  2. Mayer, M.P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005).

    Article  CAS  Google Scholar 

  3. Bukau, B., Deuerling, E., Pfund, C. & Craig, E.A. Getting newly synthesized proteins into shape. Cell 101, 119–122 (2000).

    Article  CAS  Google Scholar 

  4. Gething, M.-J.H. & Sambrook, J.F. Protein folding in the cell. Nature 355, 33–45 (1992).

    Article  CAS  Google Scholar 

  5. Young, J.C., Agashe, V.R., Siegers, K. & Hartl, F.U. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781–791 (2004).

    Article  CAS  Google Scholar 

  6. Mayer, M.P., Rudiger, S. & Bukau, B. Molecular basis for interactions of the DnaK chaperone with substrates. Biol. Chem. 381, 877–885 (2000).

    Article  CAS  Google Scholar 

  7. Karzai, A.W. & McMacken, R. A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. J. Biol. Chem. 271, 11236–11246 (1996).

    Article  CAS  Google Scholar 

  8. Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88, 2874–2878 (1991).

    Article  CAS  Google Scholar 

  9. McCarty, J.S., Buchberger, A., Reinstein, J. & Bukau, B. The role of ATP in the functional cycle of the DnaK chaperone system. J. Mol. Biol. 249, 126–137 (1995).

    Article  CAS  Google Scholar 

  10. Zhu, X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614 (1996).

    Article  CAS  Google Scholar 

  11. Cupp-Vickery, J.R., Peterson, J.C., Ta, D.T. & Vickery, L.E. Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. J. Mol. Biol. 342, 1265–1278 (2004).

    Article  CAS  Google Scholar 

  12. Jiang, J., Prasad, K., Lafer, E.M. & Sousa, R. Structural basis of interdomain communication in the hsc70 chaperone. Mol. Cell 20, 513–524 (2005).

    Article  CAS  Google Scholar 

  13. Morshauser, R.C. et al. High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70. J. Mol. Biol. 289, 1387–1403 (1999).

    Article  CAS  Google Scholar 

  14. Pellecchia, M. et al. Structural insights into substrate binding by the molecular chaperone DnaK. Nat. Struct. Biol. 7, 298–303 (2000).

    Article  CAS  Google Scholar 

  15. Stevens, S.Y., Cai, S., Pellecchia, M. & Zuiderweg, E.R. The solution structure of the bacterial HSP70 chaperone protein domain DnaK(393–507) in complex with the peptide NRLLLTG. Protein Sci. 12, 2588–2596 (2003).

    Article  CAS  Google Scholar 

  16. Wang, H. et al. NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Biochemistry 37, 7929–7940 (1998).

    Article  CAS  Google Scholar 

  17. Liu, Q. & Hendrickson, W.A. Insights into hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007).

    Article  CAS  Google Scholar 

  18. Fernández-Sáiz, V., Moro, F., Arizmendi, J.M., Acebron, S.P. & Muga, A. Ionic contacts at DnaK substrate binding domain involved in the allosteric regulation of lid dynamics. J. Biol. Chem. 281, 7479–7488 (2006).

    Article  Google Scholar 

  19. Gisler, S.M., Pierpaoli, E.V. & Christen, P. Catapult mechanism renders the chaperone action of Hsp70 unidirectional. J. Mol. Biol. 279, 833–840 (1998).

    Article  CAS  Google Scholar 

  20. Schmid, D., Baici, A., Gehring, H. & Christen, P. Kinetics of molecular chaperone action. Science 263, 971–973 (1994).

    Article  CAS  Google Scholar 

  21. Vogel, M., Bukau, B. & Mayer, M.P. Allosteric regulation of Hsp70 chaperones by a proline switch. Mol. Cell 21, 359–367 (2006).

    Article  CAS  Google Scholar 

  22. Grossman, A.D., Straus, D.B., Walter, W.A. & Gross, C.A. σ32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev. 1, 179–184 (1987).

    Article  CAS  Google Scholar 

  23. Straus, D., Walter, W. & Gross, C.A. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev. 4, 2202–2209 (1990).

    Article  CAS  Google Scholar 

  24. Tilly, K., McKittrick, N., Zylicz, M. & Georgopoulos, C. The DnaK protein modulates the heat-shock response of Escherichia coli. Cell 34, 641–646 (1983).

    Article  CAS  Google Scholar 

  25. Gamer, J., Bujard, H. & Bukau, B. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 69, 833–842 (1992).

    Article  CAS  Google Scholar 

  26. Gamer, J. et al. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. EMBO J. 15, 607–617 (1996).

    Article  CAS  Google Scholar 

  27. Liberek, K., Galitski, T.P., Zylicz, M. & Georgopoulos, C. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the σ32 transcription factor. Proc. Natl. Acad. Sci. USA 89, 3516–3520 (1992).

    Article  CAS  Google Scholar 

  28. Liberek, K., Wall, D. & Georgopoulos, C. The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the σ32 heat shock transcriptional regulator. Proc. Natl. Acad. Sci. USA 92, 6224–6228 (1995).

    Article  CAS  Google Scholar 

  29. Rodriguez, F. et al. Molecular basis for regulation of the heat shock transcription factor σ32 by the DnaK and DnaJ chaperones. Mol. Cell 32, 347–358 (2008).

    Article  CAS  Google Scholar 

  30. Mayer, M.P. et al. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 7, 586–593 (2000).

    Article  CAS  Google Scholar 

  31. Buchberger, A. et al. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J. Biol. Chem. 270, 16903–16910 (1995).

    Article  CAS  Google Scholar 

  32. Moro, F., Fernandez, V. & Muga, A. Interdomain interaction through helices A and B of DnaK peptide binding domain. FEBS Lett. 533, 119–123 (2003).

    Article  CAS  Google Scholar 

  33. Altenbach, C., Oh, K.J., Trabanino, R.J., Hideg, K. & Hubbell, W.L. Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40, 15471–15482 (2001).

    Article  CAS  Google Scholar 

  34. Ishiai, M., Wada, C., Kawasaki, Y. & Yura, T. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor). Proc. Natl. Acad. Sci. USA 91, 3839–3843 (1994).

    Article  CAS  Google Scholar 

  35. Swain, J.F. et al. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26, 27–39 (2007).

    Article  CAS  Google Scholar 

  36. Rist, W., Graf, C., Bukau, B. & Mayer, M.P. Amide hydrogen exchange reveals conformational changes in hsp70 chaperones important for allosteric regulation. J. Biol. Chem. 281, 16493–16501 (2006).

    Article  CAS  Google Scholar 

  37. Rüdiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507 (1997).

    Article  Google Scholar 

  38. Jones, G.W. & Tuite, M.F. Chaperoning prions: the cellular machinery for propagating an infectious protein? Bioessays 27, 823–832 (2005).

    Article  CAS  Google Scholar 

  39. Laufen, T. et al. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. USA 96, 5452–5457 (1999).

    Article  CAS  Google Scholar 

  40. Buchberger, A., Schroder, H., Buttner, M., Valencia, A. & Bukau, B. A conserved loop in the ATPase domain of the DnaK chaperone is essential for stable binding of GrpE. Nat. Struct. Biol. 1, 95–101 (1994).

    Article  CAS  Google Scholar 

  41. Andréasson, C., Fiaux, J., Rampelt, H., Mayer, M.P. & Bukau, B. Hsp110 is a nucleotide-activated exchange factor for Hsp70. J. Biol. Chem. 283, 8877–8884 (2008).

    Article  Google Scholar 

  42. Kunkel, T.A., Bebenek, K. & McClary, J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 204, 125–139 (1991).

    Article  CAS  Google Scholar 

  43. Theyssen, H., Schuster, H.P., Packschies, L., Bukau, B. & Reinstein, J. The second step of ATP binding to DnaK induces peptide release. J. Mol. Biol. 263, 657–670 (1996).

    Article  CAS  Google Scholar 

  44. Arsène, F. et al. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, σ32. J. Bacteriol. 181, 3552–3561 (1999).

    PubMed  PubMed Central  Google Scholar 

  45. Mayer, M.P., Laufen, T., Paal, K., McCarty, J.S. & Bukau, B. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. J. Mol. Biol. 289, 1131–1144 (1999).

    Article  CAS  Google Scholar 

  46. Szabo, A. et al. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91, 10345–10349 (1994).

    Article  CAS  Google Scholar 

  47. Altenbach, C., Cai, K., Klein-Seetharaman, J., Khorana, H.G. & Hubbell, W.L. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306–319 at the cytoplasmic end of helix TM7 and in helix H8. Biochemistry 40, 15483–15492 (2001).

    Article  CAS  Google Scholar 

  48. Columbus, L., Kalai, T., Jeko, J., Hideg, K. & Hubbell, W.L. Molecular motion of spin labeled side chains in alpha-helices: analysis by variation of side chain structure. Biochemistry 40, 3828–3846 (2001).

    Article  CAS  Google Scholar 

  49. McHaourab, H.S., Lietzow, M.A., Hideg, K. & Hubbell, W.L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35, 7692–7704 (1996).

    Article  CAS  Google Scholar 

  50. Langen, R., Oh, K.J., Cascio, D. & Hubbell, W.L. Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39, 8396–8405 (2000).

    Article  CAS  Google Scholar 

  51. McCarty, J.S. et al. Regulatory region C of the E. coli heat shock transcription factor, σ32, constitutes a DnaK binding site and is conserved among eubacteria. J. Mol. Biol. 256, 829–837 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Rodriguez for providing RepE, C. Altenbach for providing the fitting software and T. Ruppert for mass spectrometry. We thank S. R. Scholz for critical reading of the manuscript and S. Miller for help with figure preparation. We thank CellNetworks for providing the FTIR spectrometer. This work was supported by the Deutsche Forschungsgemeinschaft (SFB638 and MA 1278/4-1 to M.P.M.) and a Kekulé fellowship of the Fonds der Chemischen Industrie to R.S.

Author information

Authors and Affiliations

Authors

Contributions

R.S. designed, performed and interpreted the experiments in Figures 2,3,4 and Figure 6, Table 1, Supplementary Figures 1,4,5 and 9 and Supplementary Table 1. A.H.E. designed, performed and interpreted the experiments in Figure 5 and Supplementary Figures 6–8. B.B. designed the experiments and supervised R.S. and A.H.E. M.P.M. designed all mutant proteins; designed, performed and interpreted experiments in Supplementary Figure 2; was involved in the design and interpretation of all experiments; and supervised R.S. and A.H.E. All authors prepared figures and wrote the manuscript.

Corresponding authors

Correspondence to Bernd Bukau or Matthias P Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 1780 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlecht, R., Erbse, A., Bukau, B. et al. Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18, 345–351 (2011). https://doi.org/10.1038/nsmb.2006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing