Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins

Abstract

An internal cysteine protease domain (CPD) autoproteolytically regulates Clostridium difficile glucosylating toxins by releasing a cytotoxic effector domain into target cells. CPD activity is itself allosterically regulated by the eukaryote-specific molecule inositol hexakisphosphate (InsP6). Although allostery controls the function of most proteins, the molecular details underlying this regulatory mechanism are often difficult to characterize. Here we use chemical probes to show that apo-CPD is in dynamic equilibrium between active and inactive states. InsP6 markedly shifts this equilibrium toward an active conformer that is further restrained upon binding a suicide substrate. Structural analyses combined with systematic mutational and disulfide bond engineering studies show that residues within a β-hairpin region functionally couple the InsP6-binding site to the active site. Collectively, our results identify an allosteric circuit that allows bacterial virulence factors to sense and respond to the eukaryotic environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of an activity-based probe assay for measuring TcdB CPD activity.
Figure 2: Detection of an active conformer in the apo state using an activity-based probe.
Figure 3: Effect of InsP6 and P1 leucine inhibitor modification on TcdB CPD conformational mobility.
Figure 4: Structure of TcdB CPD and comparison with TcdA CPD.
Figure 5: InsP6 binding induces movement of conserved tryptophan in β-flap region.
Figure 6: Effect of redox state on InsP6 responsiveness of engineered disulfide bond mutants in the β-flap.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Changeux, J.P. & Edelstein, S.J. Allosteric mechanisms of signal transduction. Science 308, 1424–1428 (2005).

    Article  CAS  Google Scholar 

  2. del Sol, A., Tsai, C.J., Ma, B. & Nussinov, R. The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 17, 1042–1050 (2009).

    Article  CAS  Google Scholar 

  3. Goodey, N.M. & Benkovic, S.J. Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 4, 474–482 (2008).

    Article  CAS  Google Scholar 

  4. Tsai, C.J., Del Sol, A. & Nussinov, R. Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol. Biosyst. 5, 207–216 (2009).

    Article  CAS  Google Scholar 

  5. Egerer, M., Giesemann, T., Herrmann, C. & Aktories, K. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate. J. Biol. Chem. 284, 3389–3395 (2009).

    Article  CAS  Google Scholar 

  6. Egerer, M. & Satchell, K.J. Inositol hexakisphosphate-induced autoprocessing of large bacterial protein toxins. PLoS Pathog. 6, e1000942 (2010).

    Article  Google Scholar 

  7. Reineke, J. et al. Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446, 415–419 (2007).

    Article  CAS  Google Scholar 

  8. Shen, A. Allosteric regulation of protease activity by small molecules. Mol. Biosyst. 6, 1431–1443 (2010).

    Article  CAS  Google Scholar 

  9. Michell, R.H. Inositol derivatives: evolution and functions. Nat. Rev. Mol. Cell Biol. 9, 151–161 (2008).

    Article  CAS  Google Scholar 

  10. Egerer, M., Giesemann, T., Jank, T., Satchell, K.J. & Aktories, K. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. J. Biol. Chem. 282, 25314–25321 (2007).

    Article  CAS  Google Scholar 

  11. Prochazkova, K. et al. Structural and molecular mechanism for autoprocessing of MARTX toxin of Vibrio cholerae at multiple sites. J. Biol. Chem. 284, 26557–26568 (2009).

    Article  CAS  Google Scholar 

  12. Rupnik, M. et al. Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Microbiology 151, 199–208 (2005).

    Article  CAS  Google Scholar 

  13. Shen, A. et al. Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat. Chem. Biol. 5, 469–478 (2009).

    Article  CAS  Google Scholar 

  14. Lupardus, P.J., Shen, A., Bogyo, M. & Garcia, K.C. Small molecule–induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science 322, 265–268 (2008).

    Article  CAS  Google Scholar 

  15. Pruitt, R.N. et al. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A. J. Biol. Chem. 284, 21934–21940 (2009).

    Article  CAS  Google Scholar 

  16. Pfeifer, G. et al. Cellular uptake of Clostridium difficile toxin B. Translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J. Biol. Chem. 278, 44535–44541 (2003).

    Article  CAS  Google Scholar 

  17. Genth, H., Dreger, S.C., Huelsenbeck, J. & Just, I. Clostridium difficile toxins: more than mere inhibitors of Rho proteins. Int. J. Biochem. Cell Biol. 40, 592–597 (2008).

    Article  CAS  Google Scholar 

  18. Jank, T. & Aktories, K. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol. 16, 222–229 (2008).

    Article  CAS  Google Scholar 

  19. Voth, D.E. & Ballard, J.D. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247–263 (2005).

    Article  CAS  Google Scholar 

  20. Kelly, C.P. & LaMont, J.T. Clostridium difficile—more difficult than ever. N. Engl. J. Med. 359, 1932–1940 (2008).

    Article  CAS  Google Scholar 

  21. Rupnik, M., Wilcox, M.H. & Gerding, D.N. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526–536 (2009).

    Article  CAS  Google Scholar 

  22. Lyras, D. et al. Toxin B is essential for virulence of Clostridium difficile. Nature 458, 1176–1179 (2009).

    Article  CAS  Google Scholar 

  23. Kuehne, S.A. et al. The role of toxin A and toxin B in Clostridium difficile infection. Nature 467, 711–713 (2010).

    Article  CAS  Google Scholar 

  24. Aktories, K. Self-cutting to kill: new insights into the processing of Clostridium difficile toxins. ACS Chem. Biol. 2, 228–230 (2007).

    Article  CAS  Google Scholar 

  25. Puri, A.W. et al. Rational design of inhibitors and activity-based probes targeting Clostridium difficile virulence factor TcdB. Chem. Biol. 17, 1201–1211 (2010).

    Article  CAS  Google Scholar 

  26. Evans, M.J. & Cravatt, B.F. Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279–3301 (2006).

    Article  CAS  Google Scholar 

  27. Greenbaum, D.C. et al. Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Chem. Biol. 9, 1085–1094 (2002).

    Article  CAS  Google Scholar 

  28. Berger, A.B. et al. Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes. Mol. Cell 23, 509–521 (2006).

    Article  CAS  Google Scholar 

  29. Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1, 33–38 (2005).

    Article  CAS  Google Scholar 

  30. Powers, J.C., Asgian, J.L., Ekici, O.D. & James, K.E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750 (2002).

    Article  CAS  Google Scholar 

  31. Prochazkova, K. & Satchell, K.J. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. J. Biol. Chem. 283, 23656–23664 (2008).

    Article  CAS  Google Scholar 

  32. Sheahan, K.L., Cordero, C.L. & Satchell, K.J. Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. EMBO J. 26, 2552–2561 (2007).

    Article  CAS  Google Scholar 

  33. Chai, J. et al. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107, 399–407 (2001).

    Article  CAS  Google Scholar 

  34. Romanowski, M.J., Scheer, J.M., O'Brien, T. & McDowell, R.S. Crystal structures of a ligand-free and malonate-bound human caspase-1: implications for the mechanism of substrate binding. Structure 12, 1361–1371 (2004).

    Article  CAS  Google Scholar 

  35. Royer, C.A. Probing protein folding and conformational transitions with fluorescence. Chem. Rev. 106, 1769–1784 (2006).

    Article  CAS  Google Scholar 

  36. Datta, D., Scheer, J.M., Romanowski, M.J. & Wells, J.A. An allosteric circuit in caspase-1. J. Mol. Biol. 381, 1157–1167 (2008).

    Article  CAS  Google Scholar 

  37. Ferguson, A.D. et al. Signal transduction pathway of TonB-dependent transporters. Proc. Natl. Acad. Sci. USA 104, 513–518 (2007).

    Article  CAS  Google Scholar 

  38. Süel, G.M., Lockless, S.W., Wall, M.A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59–69 (2003).

    Article  Google Scholar 

  39. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).

    Article  CAS  Google Scholar 

  40. Fuentes-Prior, P. & Salvesen, G.S. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384, 201–232 (2004).

    Article  CAS  Google Scholar 

  41. Eisenmesser, E.Z. et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature 438, 117–121 (2005).

    Article  CAS  Google Scholar 

  42. Fraser, J.S. et al. Hidden alternative structures of proline isomerase essential for catalysis. Nature 462, 669–673 (2009).

    Article  CAS  Google Scholar 

  43. Lechtenberg, B.C., Johnson, D.J., Freund, S.M. & Huntington, J.A. NMR resonance assignments of thrombin reveal the conformational and dynamic effects of ligation. Proc. Natl. Acad. Sci. USA 107, 14087–14092 (2010).

    Article  CAS  Google Scholar 

  44. Lee, G.M. & Craik, C.S. Trapping moving targets with small molecules. Science 324, 213–215 (2009).

    Article  CAS  Google Scholar 

  45. Shahian, T. et al. Inhibition of a viral enzyme by a small-molecule dimer disruptor. Nat. Chem. Biol. 5, 640–646 (2009).

    Article  CAS  Google Scholar 

  46. Hardy, J.A., Lam, J., Nguyen, J.T., O'Brien, T. & Wells, J.A. Discovery of an allosteric site in the caspases. Proc. Natl. Acad. Sci. USA 101, 12461–12466 (2004).

    Article  CAS  Google Scholar 

  47. Scheer, J.M., Romanowski, M.J. & Wells, J.A. A common allosteric site and mechanism in caspases. Proc. Natl. Acad. Sci. USA 103, 7595–7600 (2006).

    Article  CAS  Google Scholar 

  48. Pruitt, R.N., Chambers, M.G., Ng, K.K., Ohi, M.D. & Lacy, D.B. Structural organization of the functional domains of Clostridium difficile toxins A and B. Proc. Natl. Acad. Sci. USA 107, 13467–13472 (2010).

    Article  CAS  Google Scholar 

  49. Qa'Dan, M., Spyres, L.M. & Ballard, J.D. pH-induced conformational changes in Clostridium difficile toxin B. Infect. Immun. 68, 2470–2474 (2000).

    Article  CAS  Google Scholar 

  50. Mittal, R., Peak-Chew, S.Y., Sade, R.S., Vallis, Y. & McMahon, H.T. The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J. Biol. Chem. 285, 19927–19934 (2010).

    Article  CAS  Google Scholar 

  51. Hanakahi, L.A., Bartlet-Jones, M., Chappell, C., Pappin, D. & West, S.C. Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102, 721–729 (2000).

    Article  CAS  Google Scholar 

  52. Macbeth, M.R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309, 1534–1539 (2005).

    Article  CAS  Google Scholar 

  53. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    Article  CAS  Google Scholar 

  54. Leslie, A.G. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 ESF-EAMCB Newslett. Protein Crystallogr. 26 (1992).

  55. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131–1137 (2003).

    Article  Google Scholar 

  56. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  57. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  58. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004).

    CAS  Google Scholar 

  59. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  60. DeLano, W.L. The PyMOL Molecular Graphics System, Version 1.3 (Schrödinger LLC 2002).

Download references

Acknowledgements

We thank J. Wells for helpful suggestions in the preparation of this manuscript. A.S. is supported by a US National Institutes of Health (NIH) National Institutes of General Medical Sciences grant (K99GM092934). P.J.L. is a Damon Runyon Fellow, supported by the Damon Runyon Cancer Research Foundation. A.W.P. is supported by a US National Science Foundation Graduate Research Fellowship. K.C.G. is supported by the Howard Hughes Medical Institute and NIH grant NIH-RO1AI48540. M.B. is supported by the Burroughs Wellcome Foundation and NIH grants R01EB005011 and R01AI078947.

Author information

Authors and Affiliations

Authors

Contributions

A.S. developed and executed autocleavage, probe labeling, limited proteolysis and tryptophan fluorescence assays; constructed, purified and expressed CPD variants; prepared CPD for crystallization studies; helped design the AWP19 probe; and wrote the manuscript. P.J.L. crystallized InsP6-bound TcdB CPD, collected the data, solved and analyzed the structure, generated Figure 4 and Table 1 and provided advice on the manuscript. M.M.G. synthesized AWP19, helped with initial characterization of TcdB CPD mutants using a fluorogenic substrate assay and the probe labeling assay and provided creative input. A.W.P. helped design and synthesize the AWP19 probe and performed initial characterization of probe labeling of TcdB CPD. V.E.A. helped design the AWP19 probe and provided advice on probe usage. K.C.G. provided advice on the manuscript and provided financial support. M.B. provided creative input and financial support, and helped write the manuscript.

Corresponding author

Correspondence to Matthew Bogyo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 1277 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, A., Lupardus, P., Gersch, M. et al. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat Struct Mol Biol 18, 364–371 (2011). https://doi.org/10.1038/nsmb.1990

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing